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Tall young females benefit from a smaller trade-off between 
somatic growth and early fecundity than shorter females of 
the same age, but older females appear to favor reproduction 
over growth regardless of size. Our study highlights how 
individual heterogeneity determines trade-offs between life-
history components. We speculate that cohort effects affect 
age-specific reproductive success in this long-lived mammal.
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Introduction

Fitness is maximized through optimal allocation to life-
history components, but limited resources force alloca-
tion trade-offs between reproduction, growth, and survival 
(Stearns 1992; Roff 2002). As allocation decisions occur 
over the lifetime, fitness components may have different 
age-related trajectories. Large size often confers a fitness 
advantage for females, through larger litter size (Olsson 
and Shine 1996; Lardner and Loman 2003) and litter mass 
(Dobson and Michener 1995; Sparkman et al. 2007), higher 
reproductive success (Choudhury et al. 1996; Sand 1996; 
Festa-Bianchet et al. 1998; Pomeroy et al. 1999), greater 
maternal care (Landete-Castillejos et al. 2005), higher off-
spring survival (Beauplet and Guinet 2007; Hamel et al. 
2009a), and increased longevity (Gaillard et al. 2000b). 
Therefore, relatively large females should enjoy increased 
reproductive success (Stearns and Koella 1986). Alloca-
tion to growth, however, diverts resources from reproduc-
tion (Lunn et al. 1994; Dmitriew 2011) and allocation to 
reproduction impedes the achievement of a large body size 
(Green and Rothstein 1991; Helle 2008). Allocation to one 
life-history component may also reduce future capacity to 
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allocate. For example, rapid growth may generate long-term 
costs through oxidative stress and premature cellular aging 
(Metcalfe and Monaghan 2001; Alonso-Alvarez et al. 2007). 
Slow or suboptimal growth may, however, delay age at matu-
rity (Allal et al. 2004; Rughetti and Festa-Bianchet 2011), 
reduce long-term reproductive success (Hayward et  al. 
2014), or require costly compensatory trajectories (Johnsson 
and Bohlin 2006; Marcil-Ferland et al. 2013). Delayed matu-
rity may be advantageous if attaining a larger size before the 
first reproduction decreases offspring mortality and leads to 
higher lifetime reproductive success compared to maturing 
earlier and smaller (Stearns and Koella 1986; Lunn et al. 
1994; Sand 1996). Growth, however, like reproduction, may 
be limited by low resource availability (Madsen and Shine 
2000; Toïgo et al. 2002; Chaloupka et al. 2004), popula-
tion density (Pettorelli et al. 2002), or environmental con-
ditions such as temperature (Blanckenhorn 1999; Otterlei 
et al. 1999) and precipitation (Perez-Barberia et al. 1996; 
Servanty et al. 2009).

Most long-lived mammals stop growing shortly after sex-
ual maturity (Karkach 2006); therefore, trade-offs between 
growth and reproduction only affect young individuals. 
Hence, the growth cost on reproduction should be higher 
for young mammals (Gaillard et al. 2000a; Langvatn et al. 
2004) and allocation is expected to shift from growth to 
reproduction as animal’s age (Beauplet et al. 2006; Simard 
et al. 2014). If growth is indeterminate, however, individuals 
may face persistent allocation trade-offs between growth and 
reproduction (Heino and Kaitala 1999). In addition, because 
age and size are correlated in organisms with indeterminate 
growth, the positive association between age and reproduc-
tive success may simply be a consequence of a size advan-
tage (Olsson and Shine 1996), since larger individuals are 
usually older. If reproductive performance increases with 
size, reproductive success should increase with age (Beau-
plet et al. 2006; Sparkman et al. 2007). Furthermore, larger 
females may allocate more resources to progeny with higher 
fitness returns (Trivers and Willard 1973), and in polygynous 
species, this may result in size-specific differential sex allo-
cation. Although lower male offspring survival is expected in 
most polygynous species (Clutton-Brock et al. 1985), larger 
female bridled nail-tail wallabies (Onychogalea fraenata) 
(Fisher 1999), tammar wallabies (Macropus eugenii), and 
parma wallabies (M. parma) (Sunnucks and Taylor 1997) 
produce more sons than smaller females. Female tammar 
wallabies that produced sons had greater weaning success in 
a cross-fostering experiment (Robert et al. 2010), suggesting 
that offspring sex may be correlated with ability to provide 
maternal care (Robert et al. 2010). Despite these important 
implications for the evolution of reproductive strategies and 
for population dynamics, no studies have examined the allo-
cation decisions between growth and reproduction, and their 
distinct trajectories in iteroparous long-lived mammals with 

indeterminate growth, and little is known about the variabil-
ity in age-specific growth in these species.

We examined annual reproductive success and growth in 
wild female eastern grey kangaroos (Macropus giganteus) to 
understand lifetime trajectories of allocation to growth and 
reproduction. Kangaroos are large iteroparous herbivores, 
ecologically similar to ungulates; sexually dimorphic and 
polygynous (Fisher et al. 2002). They are marsupials, with 
a very short gestation and a long lactation (Tyndale-Biscoe 
and Janssens 1988), and can reproduce year round (Poole 
1975; King and Goldizen 2016). Young remain in the pouch 
for about 10 months and are weaned at 16–23 months (Tyn-
dale-Biscoe and Janssens 1988; King and Goldizen 2016). 
Kangaroos show indeterminate skeletal growth over their 
lifetime (Karkach 2006), making them ideal subjects to tease 
apart the effects of size, age, and environmental factors on 
allocation decisions between growth and reproduction. 
Trade-offs between growth and reproduction have already 
been explored in our study population (Gélin et al. 2016b), 
but our research now benefits from a sample of known-aged 
females that lived through a wide range of environmental 
conditions.

We first sought to quantify the relationship between 
reproductive success and skeletal size at different ages, to 
understand the relative importance of body size for repro-
duction in the context of indeterminate growth. Because 
kangaroos are monotocous, we expected an asymptotic 
relationship between size and reproductive success, and 
hypothesized that taller females would allocate more 
energy to reproduction than to growth. We consequently 
predicted that taller females would have higher fecundity 
and offspring survival than shorter females. In addition, we 
expected allocation decisions to change with age, so that 
for a given size, younger females would be less likely to 
reproduce than older females, which we expected to allocate 
more resources to reproduction (Sand 1996; Simard et al. 
2014). Therefore, we predicted that the positive effect of 
size on reproductive success would decrease with female 
age (Langvatn et al. 2004). We also tested for sex-differential 
allocation and predicted that female size should affect sur-
vival of sons but not of daughters, expecting that ability to 
provide care would be correlated with size (Clutton-Brock 
et al. 1985; Robert et al. 2010). Finally, we expected that 
while maternal body reserves and favorable environmental 
conditions would increase reproductive success, the previous 
reproductive effort should lower success, because like many 
long-lived organisms, female kangaroos have a conservative 
reproductive strategy (Gélin et al. 2015) and may transfer the 
costs of reproduction to subsequent offspring (Martin and 
Festa-Bianchet 2010). We define reproductive effort as the 
proportion of energy allocated to reproduction (Tuomi et al. 
1983). Body condition reflects energy stores, and changes 
in condition provide clues to both the previous reproductive 
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effort and ability to allocate to future growth and reproduc-
tion (Peig and Green 2009).

Our second aim was to investigate how adult skeletal 
growth varied with size and age, through annual changes 
in size between consecutive captures. We hypothesized that 
selection for continued growth would reduce allocation to 
reproduction, especially for small and young females. We 
expected indeterminate growth to act as a cost for reproduc-
tion and be an underlying mechanism for a reproductive size 
advantage. We quantified the age- and size-specific growth 
trajectories of female kangaroos, after accounting for the 
effects of body condition, reproductive effort, and environ-
mental variables on annual growth. We expected females 
to grow more if they were in better relative body condition 
and predicted that environmental conditions during adult 
life would affect skeletal growth. We then predicted that the 
effect of size on annual growth would decrease with age. 
Females may allocate less to growth at any given size fol-
lowing maturity, as typically seen in organisms with inde-
terminate growth (Heino and Kaitala 1999; Folkvord et al. 
2014), which then produces distinct size-at-age growth 
trajectories.

Methods

Study population and data collection

We have monitored a kangaroo population since 2008 at 
Wilsons Promontory National Park, Victoria, Australia 
(38°57′S, 146°17′E). Most marked individuals are recap-
tured annually (Gélin et al. 2013) in a 110-ha grassland sur-
rounding an emergency landing strip (Davis et al. 2008), 
where vegetation consists primarily of grasses, herbs, 
sedges, and ferns (Davis et al. 2010). Between 2008 and 
2016, annual rainfall ranged from 518 to 1018 mm, with 
33% occurring from June to August on average. The low-
est monthly mean maximum temperatures (13.4 °C) were 
in July [http://www.bom.gov.au/climate/data; Shallow Inlet 
(#085163), 38.79°S, 146.18°E; Corner Inlet (#085301), 
38.63°S, 146.81°E].

To obtain reproductive and morphometric data, adult 
females were immobilized by  Zoletil® injected with a pole 
syringe (King et al. 2011). They were then fitted with a 
unique combination of colored flexible collar and Allflex 
ear tags (Allflex Australia Pty Ltd., Capalaba, Australia) 
(Gélin et al. 2013). Females were weighed to the closest 
0.25 kg with a spring scale, and their forearm, foot, and 
hind leg (henceforth referred to as leg) lengths measured 
to the nearest 1 mm using a retractable measuring tape. 
Leg length was used as a proxy for skeletal size. Adult 
females aged 3–20 years (N = 327) had an average ± SD 
leg length of 520 ± 22 mm (Fig. 1, range 456–569 mm) 

and weighed 26.25 ± 3.25 kg (range 18–34 kg). Most 
measurements (84%) were done by the same observer, 
from late July to early December each year. In this popu-
lation, more than 75% of pouch young are born between 
November and February (King and Goldizen 2016), such 
that permanent emergence from the pouch (PEP) (Russell 
1989) generally occurs in the Austral spring. We deter-
mined fecundity at capture by visual inspection of teats 
and checked for the presence of a pouch young. We con-
sidered that a female had not attempted to reproduce that 
year if her teats did not show signs of lactation. A female 
was considered fecund if she had an elongated or regress-
ing teat, whether the pouch held a young at capture or not. 
Because females were monitored over multiple years, we 
were also able to detect cases where the female was still 
nursing a young produced the previous year. Observation 
of teats at capture revealed if the female had produced a 
young in the current year. Fecundity was scored as a bino-
mial trait (0 = no lactation, 1 = lactation). For the < 10% 
of females not recaptured in a year, we considered that 
they had reproduced if a distended pouch was noted during 
field observations. At capture, pouch young were marked 
with colored Leader ear tags (Leader Products Pty Ltd., 
Craigieburn, Australia) if they weighed at least 0.9 kg. 
Following capture, mother–young pairs were monitored 

Fig. 1  Age-specific leg length and annual growth (mm) with stand-
ard deviations for eastern grey kangaroo females, Wilsons Promon-
tory National Park, Victoria, Australia, from 2008 to 2016. Dots rep-
resent leg length and open circles annual skeletal growth

http://www.bom.gov.au/climate/data
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almost daily from August to December, in March, and then 
located again at the end of the following winter (August). 
Date of PEP was recorded for all marked young surviv-
ing to that stage. Offspring survival was also scored as a 
binomial trait (0 = died before PEP, 1 = successful PEP).

Other maternal characteristics documented included 
age and relative body condition. Age was known if the 
female had first been captured in the pouch or weighing 
less than 15 kg (aged l year). For females first caught as 
adults that were found dead, age at death was estimated 
by the Molar Index, based on the anterior progression of 
the upper molars with age. The 95% confidence inter-
val of this index has a range of 16% of the estimated age 
(Kirkpatrick 1965). Age was then retroactively calculated 
to first capture (see Fig. S1 in ESM for sample distribu-
tion). Maternal relative body condition was the ratio of 
body mass-to-mass predicted by an ordinary least-squares 
regression of log mass on log leg length (Le Cren 1951). 
This index ranged 0.93–1.07 (SD = 0.02). The residuals 
of this regression were normally (Shapiro–Wilk normality 
test: W = 0.997, P = 0.13; ESM Appendix S2, Fig. S2) and 
randomly distributed (ESM Appendix S2, Fig. S3). The 
body condition estimates were not correlated to leg length 
(rp = 0.01, df = 246, P = 0.82). The condition index was, 
therefore, independent of skeletal size and appropriate for 
organisms with indeterminate growth. We calculated the 
relative body condition index using leg length, because it 
best represented skeletal size. In a principal component 
analysis including leg, forearm, and foot measurements, 
leg length had a component loading of 51.8% on the first 
principal component, which explained 94.9% of variabil-
ity in female size (see ESM Appendix S3 for details). To 
represent inter-annual variability in environmental condi-
tions during a reproductive attempt or a growth interval 
throughout the study (2008–2016), we used precipitation 
data from the closest Australian Bureau of Meteorology’s 
station at Shallow Inlet station, 17.5 km from the study 
area. Rainfall data provided a density-independent envi-
ronmental factor linked to primary productivity and known 
to influence population dynamics of large herbivores 

through the body condition of females (Gaillard et al. 
2000a; Forchhammer et al. 2001).

Statistical analyses

To test the hypothesis of a size advantage in female kan-
garoos, we studied their annual probability of fecundity as 
well as the probability of a juvenile surviving to PEP (about 
10 months). A total of 309 captures (or female-years) of 
females aged 3–20 years were used to analyze fecundity 
(ESM; Fig. S1). To investigate the probability of PEP, we 
used a subset of 212 captures of 88 lactating females. The 
explanatory variables considered for both reproductive 
stages were four maternal traits: age, leg length, relative 
body condition, and reproductive status the previous year, 
to account for possible costs of the previous reproduction 
on the current attempt (Pomeroy et al. 1999; Hamel et al. 
2009a). The previous reproductive status was recorded as 
whether or not a female carried a pouch young the previ-
ous year until it was large enough to tag, about 7–8 months. 
Rainfall during the season prior to the reproductive stage 
considered was included in each model set (Table 1), to 
account for environmental conditions. We examined the 
age-size allocation trajectory by testing for an interaction of 
size and age. Because the effect of the previous reproductive 
status on current reproduction may vary with leg length, 
age, and total rainfall, we tested for those interactions, as 
well. We considered the possibility of sex-differential sur-
vival and compared annual juvenile sex ratio of the entire 
marked population with that of known-aged females to check 
for a possible bias. Twenty generalized linear-mixed logistic 
regressions with a logit link function were compared, inves-
tigating the two reproductive stages through two model sets 
(ESM Appendix S4; Tables S1–S2).

We then examined how growth may involve a reproduc-
tive cost. Our 327 captures of females aged 3–20 years pro-
vided 243 growth intervals from 79 individuals. The pat-
tern of indeterminate growth was investigated through the 
difference in leg length (mm) between consecutive annual 
captures, and we adjusted annual growth to a 365-day 
interval for all females. Average inter-capture interval was 

Table 1  Seasonal rainfall variables that were compared to two stages of eastern grey kangaroo reproduction at Wilsons Promontory National 
Park, Victoria, Australia

Rainfall data were available from the Australian Bureau of Meteorology repository, at the Shallow Inlet station. ‘t’ refers to the year

Stage of reproduction (sample size in female-years) Precipitation data Period Mean ± SD Min–Max

Evidence of lactation (n = 309) Total rainfall (mm) 
during spring prior to 
breeding season

September–November (t) 224.5 ± 65.5 145–322

Permanent emergence from the pouch (PEP) 
(10 months, n = 212)

Total rainfall (mm) dur-
ing winter of pouch 
life

June–August (t + 1) 277.1 ± 70.5 144–400
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356 days (SD = 59 days) and 269 of 327 (82%) captures 
occurred in late winter or early spring (mean = 24 August, 
SD = 36 days). A model set of 20 linear-mixed candidate 
models with a Gaussian link function was formulated to 
explain annual leg growth, with female age, leg length, rela-
tive body condition, and reproductive status (large pouch 
young or not) at the first capture of each growth interval 
as explanatory variables (ESM Appendix S5; Table S3). 
Winter rainfall (June to August) prior to the growth inter-
val was included to represent climatic conditions just before 
the measured growth increment. Age-specific changes in 
the allocation trajectory were tested using an interaction 
between age and leg length. We also tested if winter rainfall 
and age modulated the effect of current reproductive status 
on annual growth.

In all models, female identity was included as a random 
factor to account for repeated measurements of the same 
individuals. The significance of year of capture as a random 
factor was tested using a log-likelihood ratio test. We also 
tested for potential observer effects by considering observer 
identity as a random factor. We evaluated the relative sup-
port of multiple biological hypotheses that could explain 
skeletal growth, fecundity, and PEP (Burnham and Anderson 
2002) with three sets of candidate models, using the second-
order Akaike’s information criterion  (AICc) (Burnham and 
Anderson 2002). For each hypothesis, the relative strength 
of evidence of each candidate model was established and we 
ranked the models by Δi values relative to the model with 
the lowest  AICc. Akaike weights  (wi) and evidence ratios 
were computed to indicate the probability that a model was 
the best among those compared and the ratio of wi of the 
best model to the wi of the next-best model, respectively 
(Burnham and Anderson 2002). Models with wi ≥ 0.05 were 
considered to have support. When more than one model was 
within a Δi value of two or if no model had a wi > 0.9, model 
selection uncertainty existed. Under these circumstances, we 
calculated model-averaged parameter estimates (Burnham 
and Anderson 2002) to obtain average effect sizes for vari-
ables of interest. Model-averaged estimates for variables that 
best described leg growth and reproductive success had 95% 
unconditional confidence intervals that did not overlap zero 
(Burnham et al. 2011).

All model-averaged parameters were obtained from 
regressions fit to rescaled explanatory variables, account-
ing for untransformed binary operators (μ = 0, SD = 0.5) 
(Gelman 2008). The Pearson’s product-moment correlation 
coefficient rp was calculated between age, body mass, leg 
length, and relative body condition to assess the strength of 
association between these variables. In full models including 
all explanatory variables, all generalized variance inflation 
factors (GVIF) were less than 2, the highest being 1.82 (age). 
We used R version 3.2.5 and the lmer and glmer functions 
from the lme4 package (Bates et al. 2015). To obtain  AICc 

values, perform model averaging and estimate model param-
eters, we used the aictab and modavg functions in the AIC-
cmodavg package (Burnham et al. 2011).

Results

Maternal relative body condition index varied among years 
(F = 10.24, df = 7, P < 0.001) and was not correlated with 
age (rp = 0.06, df = 246, P = 0.17). Although leg length was 
correlated with both age (rp = 0.66, df = 246, P < 0.001) 
and mass (rp = 0.78, df = 246, P < 0.001), the relative body 
condition index was independent of leg length (rp = 0.02, 
df = 246, P = 0.80).

In all four model selections, no single candidate model 
had clear support, because at least another model was within 
two  AICc units of the best model (Tables 2, 3). Therefore, 
multi-model inference was performed to estimate effect 
sizes.

Size‑specific fecundity and offspring survival

Rainfall prior to the reproductive stage varied substantially 
among years (Table 1). We included year as a random factor 
in models for PEP, as it significantly improved the global 
model fit, but year did not improve the fit for the fecundity 
models (log-likelihood ratio tests; Fecundity: χ2 = 0.08, 
P = 0.79; PEP: χ2 = 26.34, P < 0.001).

There was no significant yearly variability in the pro-
portion of females that attempted to reproduce (Fig. 2a, 
ANOVA: F = 1.32, df = 8, P = 0.26), but there were differ-
ences for successful PEP (Fig. 2b, ANOVA: F = 411, df = 1, 
P < 0.001). Fecundity increased with leg length, although 
this effect was much greater for younger females (Table 4, 
Fig. 3a). Maternal relative body condition increased fecun-
dity (Table 4, Fig. 3b). Furthermore, the effect of rainfall on 
fecundity was affected by the previous reproductive status 
(Table 4), since spring precipitation increased fecundity only 
for females that had produced a large pouch young the previ-
ous year (Fig. 3c).

Sex of the pouch young was known for 62% (131/212) 
of reproductive attempts of known-aged females, compared 
to 76% (471/616) of all marked females. The proportion of 
sons did not differ between the two subsets (all females: 
252/471 (53.5%), known-age females: 65/131 (49.6%); 
χ2 = 0.18, df = 1, P = 0.67). Model selection and model 
averaging for known-aged females with known-sex pouch 
young suggested no effect of sex on survival to PEP (model-
averaged β, 0.6; 95% CI – 0.3 to 1.5) and neither leg length 
(model-averaged β, 1.2; 95% CI – 0.7 to 3.0) nor maternal 
body condition (model-averaged β, 2.6; 95% CI − 0.3 to 4.9) 
modulated this effect. Therefore, to increase sample size, our 
final model sets did not include sex of the young. Maternal 
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relative body condition was a strong predictor of survival 
to PEP (Table 4, Fig. 3d). Rainfall, previous reproductive 
status, and leg length alone or in interaction with age did not 
yield effects different from zero (Table 4).

Intrinsic and extrinsic determinants of annual growth

Recorded changes in leg length  ±  SD over 365  days 
decreased from 20.2 ± 9.1 mm for females aged 3 years to 
3.1 ± 4.7 mm for females aged 12 and older (Fig. 1). At 
capture, 69% of females (168/243) showed signs of lacta-
tion. Winter rainfall prior to the growth interval averaged 
279 ± 73 mm (range 144–400). Final models of growth did 
not include year of capture as a random variable, because it 
did not improve the global model fit (Log-likelihood ratio 
test: χ2 = 2.94, P = 0.09). A likelihood ratio test comparing 

mixed models with and without observer identity as a ran-
dom factor did not detect significant observer effects on 
recorded leg growth (χ2 = 0.87, P = 0.35).

Annual leg growth was mostly determined by leg length 
at the beginning of the growth interval (Table 4), but this 
effect varied with age (Table 4, Fig. 4a). At the average age 
of 8 years, females that were one standard deviation (22 mm) 
shorter than average grew 57% more (10.8 mm year−1) than 
the average-sized female growth of 6.9 mm year−1. More-
over, average-sized females aged 4 years grew more than 
twice as much (10.0 mm year−1) as average-sized females 
aged 12 years (3.8 mm year−1). Maternal relative body con-
dition was positively correlated with leg growth; females 
whose body condition was one standard deviation (0.02) 
above average grew 3.2 mm more per year compared to 
females of average condition (Table 4). In addition, every 

Table 2  Model selection for the effects of leg length, age, relative body condition, previous reproductive status, and seasonal rainfall on the 
probability of fecundity for female kangaroos and survival of their young to permanent emergence from the pouch

Maternal identity (1|ID) was included as a random factor in both model selections, whereas year of reproductive attempt (1|Year) was included 
in fecundity models
a K number of estimated parameters (with intercept and error terms), AICc Akaike’s second-order information criterion, Δi difference between 
model  AICc and the lowest  AICc in the model set, wi Akaike model weight, Evidence ratio ratio of wi of the best model to the wi of the subse-
quent models. Models are ranked in descending order of support and models with weak support (wi < 0.05) are omitted from the table but listed 
in Appendix 1 of the Electronic supplementary material. Age female age at capture, Size initial leg length (mm), pRS previous reproductive sta-
tus, Cond initial relative body condition, Rain total rainfall during the season (3 months) prior to the reproductive stage tested, 1|ID and 1|Year 
maternal identity and year of reproductive attempt, respectively, that were included as a random intercept

Modela K AICc Δi wi Evidence ratio

Fecundity for all females (n = 309)
 Age + Size + pRS + Cond + Rain + Age × Size + pRS × Rain +1|ID 9 329.21 0.00 0.56 2.5
 Age + Size + pRS + Cond + Rain + Age × Size +1|ID 8 331.12 1.91 0.22 6.2
 Age + Size + pRS + Cond + Rain + Age × Size + Age × pRS +1|ID 9 332.85 3.64 0.09 7.0
 Age + Size + pRS + Cond + Rain + Age × Size + Size × pRS +1|ID 9 333.19 3.98 0.08

Permanent pouch emergence, only females that produced a young (n = 212)
 Cond + 1| ID + 1|Year 4 195.39 0.00 0.60 2.2
 Cond + pRS + 1|ID + 1|Year 5 196.96 1.57 0.27

Table 3  Model selection for the effects of leg length, age, relative body condition, reproductive status, and winter rainfall on annual leg growth 
(mm) of female kangaroos (n = 79)

Maternal identity (1|ID) was included as a random factor
a K number of estimated parameters (with intercept and error terms), AICc Akaike’s second-order information criterion, Δi difference between 
model  AICc and the lowest  AICc in the model set, wi Akaike model weight, Evidence ratio ratio of wi of the best model to the wi of the subse-
quent models. Models are ranked in descending order of support and 17 models with weak support (wi < 0.05) are omitted from the table but 
listed in Appendix 1 of the Electronic supplementary material. Age female age at capture, Size initial leg length (mm), RS reproductive status at 
the initial capture, Cond initial relative body condition, Rain total winter rainfall prior to growth, 1|ID maternal identity included as a random 
intercept

Modela K AICc Δi wi Evidence ratio

Age + Size + Cond + RS + Rain + Age × Size + Age × RS + 1|ID 10 1543.13 0.00 0.64 2.8
Age + Size + Cond + RS + Rain + Age × Size + Age × RS + RS × Rai

n + 1|ID
11 1545.12 1.99 0.23 8.0

Age + Size + Cond + RS + Rain + Age × Size + RS × Rain +1|ID 10 1547.34 4.21 0.08
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additional standard deviation of winter rainfall (73 mm) 
reduced leg growth by 2 mm (Table 4). While the effect 
of female reproductive status did not differ from zero, age 
modulated this effect (Table 4). Reproduction reduced leg 
growth for females younger than 9 years and affected the 
youngest females most (Fig. 4b): at age 4, breeding females 
grew 3.4-mm year−1 less than non-breeding females; this 
difference was reduced to 1.7-mm year−1 at age 7.

Discussion

Fecundity of female eastern grey kangaroos increased with 
body size, but this effect weakened with age. Young and 
short females were less fecund, but being short later in life 
did not affect fecundity as much, suggesting that as females 
aged, they switched resource allocation from growth to 
reproduction, regardless of their size. We detected costs 
of the previous reproduction on current fecundity but 
only during harsh environmental conditions, confirming 
that reproductive costs fluctuate in variable environments 
(Tuomi et al. 1983; Toïgo et al. 2002). Both fecundity 
and offspring survival to PEP were strongly affected by 
maternal condition. Annual growth of adult females was 
mostly explained by their size and age, although annual 

differences in winter rainfall and interindividual variation 
in body condition also explained variability in individual 
growth. Environmental conditions and habitat quality can 
influence the growth of adult kangaroos, especially for 
young females whose growth is faster. Although older 
females had lower growth rates than younger females, 
young females that attempted to reproduce had reduced 
growth, whereas older females maintained similar growth 
whether they lactated or not. These results suggest that the 
fitness benefit of size in kangaroos emerges from reduced 
trade-offs between growth and reproduction at a larger 
size (Green and Rothstein 1991; Folkvord et al. 2014), but 
also highlight a flexible age-dependent allocation between 
these two life-history components (Heino and Kaitala 
1999; Lardner and Loman 2003), since both short and tall 
females had high fecundity later in life.

Longitudinal monitoring of known-age females revealed 
that fecundity remained high and stable across all years. 
Juvenile survival to PEP (10 months), however, fluctuated 
substantially. In 2013, only 1% of females (1/97) carried 
their young until PEP, compared to 87% (55/63) in 2009. 
Annual variation was partly explained by maternal relative 
body condition, as expected, and maternal condition was a 
strong predictor for both fecundity and offspring survival to 
PEP. In kangaroos, gestation is very short and its costs are 
negligible compared to lactation (Tyndale-Biscoe and Jans-
sens 1988; Cripps et al. 2011). Accordingly, we found that 
maternal condition was most important in mid lactation: all 
lactating females one standard deviation below average rela-
tive condition failed that reproductive attempt, while young 
born to females that were two standard deviations above 
average had a 75% probability of PEP. This suggests that 
lactating kangaroos need to maintain condition to sustain 
reproduction. Indeed, lactating females must also carry their 
young, which can weigh up to one quarter of maternal mass 
by the end of pouch life (Poole et al. 1982; Tyndale-Biscoe 
and Janssens 1988). In long-lived mammals such as large 
herbivores, females adopt a conservative reproductive strat-
egy (Gaillard et al. 1998; Gélin et al. 2015; Rughetti et al. 
2015), favoring their own survival and transferring the cost 
of reproduction to their young (Martin and Festa-Bianchet 
2010). Among marsupial herbivores, maternal condition has 
been linked to juvenile survival in the agile wallaby (Macro-
pus agilis) (Bolton et al. 1982), and in our study population, 
low forage production was associated with lower maternal 
condition and lower milk energy content in mid lactation 
(Quesnel et al. 2017). Kangaroos are partly income breed-
ers (Gélin et al. 2016b) and may experience highly variable 
environmental conditions. Our results suggest that most 
females attempted to reproduce, because gestation involves 
negligible energy costs, but after parturition, females in poor 
condition terminated their reproductive attempt, probably to 
favor their own survival.

Fig. 2  a Marked female kangaroos aged 3  years and older that did 
(grey bars) and did not (white bars) reproduce at Wilsons Promontory 
National Park, Victoria, Australia, from 2008 to 2015. For females 
that reproduced, b grey bars show number of females whose young 
survived to permanent emergence from the pouch (PEP)
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Our results reveal that fecundity followed an age- and 
size-specific trajectory in kangaroos. After account-
ing for body condition, taller females were more fecund, 
highlighting the importance of skeletal size for reproduc-
tion. Although 83% of average-sized females aged 8 years 
attempted to reproduce, those shorter by one or two standard 
deviations (SD = 22 mm) were 10 or 25% less likely to 
reproduce, respectively. This size effect was strongest for 
younger females. In moose (Alces alces) (Sand 1996) and 
red deer (Cervus elaphus) (Langvatn et al. 2004), increases 
in mass had stronger positive effects in the probability of 
ovulation in younger females. In addition, heavier young 
female bison (Bison bison) calved earlier than lighter 
females (Green and Rothstein 1991). Female chamois (Rupi-
capra rupicapra) with rapid early horn growth achieved 
higher pre-reproductive body mass and were primiparous 
at a younger age than females with slow early horn growth 
(Rughetti and Festa-Bianchet 2011). Our results suggest that 

in a context of indeterminate growth, age-specific skeletal 
size is also of paramount importance in determining age-
specific allocation decisions. As fecundity increases with 
size, selection may favor a delay in allocation to reproduc-
tion until females reach a threshold size (Heino and Kaitala 
1999; Dmitriew 2011; Simard et al. 2014). Thus, females 
that enjoy favorable early growth may enjoy a longer repro-
ductive lifespan, because their initially greater size gives 
them a permanent advantage over smaller females (Madsen 
and Shine 2000). Other studies of large mammals reported 
that the early reproduction both increased reproductive lifes-
pan and was positively correlated with later reproductive 
success (Green and Rothstein 1991; Hayward et al. 2014), 
suggesting that early growth may be related to phenotypic 
quality. Because most females from our sample with known 
age and pre-reproductive growth are still alive, we cannot 
yet investigate the effect of early growth on lifetime repro-
ductive success.

Table 4  Model-averaged 
parameter estimates with 
their unconditional 95% 
confidence intervals explaining 
variation in annual fecundity, 
offspring survival to permanent 
emergence of the pouch, and 
skeletal growth in female 
eastern grey kangaroo, using 
rescaled variables (reduced and 
centered to 2 × mean)

Values in bold have unconditional 95% confidence intervals that differ from zero

Terms Parameter value 95% unconditional 
confidence interval

Fecundity (N = 309)
 Female age − 0.17 − 1.0, 0.6
 Female leg length 1.7 0.8, 2.6
 Relative body condition 1.7 0.9, 2.5
 Rainfall during conception period 0.4 − 0.1, 1.0
 Previous reproductive status (reference = no lactation) − 0.7 − 1.4, 0.1
 Female age × leg length − 2.1 − 3.6, − 0.6
 Female age × previous reproductive status 0.4 − 0.9, 1.7
 Leg length × previous reproductive status − 0.2, − 1.6, 1.2
 Rainfall × previous reproductive status 1.2 0.02, 2.4

Permanent emergence from the pouch (N = 212)
 Female age − 0.5 − 1.5, 0.5
 Female leg length 0.6 − 0.4, 1.6
 Relative body condition 2.0 0.6, 3.4
 Rainfall during winter of pouch life 0.7 − 2.5, 3.9
 Previous reproductive status (reference = no lactation) 0.3 − 0.5, 1.1
 Female age × leg length − 0.9 − 2.7, 0.9
 Female age × previous reproductive status − 0.7 − 2.4, 0.9
 Leg length × previous reproductive status 0.04 − 1.7, 1.8
 Rainfall × previous reproductive status 1.3 − 1.7, 4.2

Annual skeletal growth (N = 243)
 Female age − 1.8 − 4.4, 0.9
 Female leg length − 11.9 − 14.6, − 9.3
 Female relative body condition 3.2 1.3, 5.2
 Total winter rainfall − 1.9 − 3.6, − 0.3
 Current reproductive status (reference = no lactation) − 2.4 − 4.3, 0.1
 Female age × leg length 9.1 5.3, 12.9
 Female age × reproductive status 3.8 0.3, 7.4
 Winter rainfall × reproductive status − 0.8 − 4.6, 2.9
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The size effect on fecundity decreased with increas-
ing age, suggesting that the optimal allocation changed as 
females aged, as predicted for organisms with indetermi-
nate growth (Heino and Kaitala 1999; Folkvord et al. 2014). 
Older females allocate more to reproduction even if they 
are small. The greater experience or better foraging skills of 
older females may allow greater reproductive success despite 
a smaller size (Lunn et al. 1994).

We did not find sex effects on survival to PEP, despite 
predictions that sons should be more affected than daughters 
by a poor environment or lower maternal care in sexually 
dimorphic mammals (Clutton-Brock et al. 1985). Our sam-
ple of known-sex juveniles, however, included mostly young 
that had survived to 7–8 months, and thus, we could not 
account for the early mortality. In addition, only mothers in 
good condition successfully brought their young to PEP and 
in this population, and heavier mothers tend to produce sons 
(Le Gall-Payne et al. 2015), potentially contributing to the 
apparent lack of sex bias in juvenile survival. Other factors 
are likely responsible for the highly variable PEP between 

years (King et al. 2017), suggesting a considerable role of 
environmental stochasticity, including weather and predation 
(Banks et al. 2000; King and Goldizen 2016).

We quantified the indeterminate skeletal growth pat-
tern in kangaroos and explored some of its endogenous and 
exogenous determinants. The previous work on the same 
population found increased allocation to somatic functions 
for smaller females (Gélin et al. 2016b), supporting a pat-
tern of size-dependent growth common in most organisms, 
likely due to larger individuals reducing allocation to growth 
because of higher biomass maintenance costs (Pomeroy et al. 
1999; West et al. 2001; Lardner and Loman 2003). Thus, 
as expected, short females grew 30% more than females of 
average leg length. This size-dependent skeletal growth tra-
jectory was, however, considerably influenced by age, sug-
gesting that growth is a higher priority for young females, as 
expected for animals with indeterminate growth (Folkvord 
et al. 2014). Because annual growth in female kangaroos 
is mostly explained by their body size, the lower fecundity 
of short females may partly involve a greater allocation to 

Fig. 3  Model-averaged effects of maternal and environmental vari-
ables on reproductive performance in female kangaroos at Wilsons 
Promontory National Park, Victoria, Australia, 2008 to 2015. Esti-
mates are shown by lines and 95% CIs are represented by darkened 
bands. Dots show raw data. a Effect of scaled leg length as a function 
of four female ages on fecundity. b Effect of scaled maternal relative 

condition on fecundity. c Effect of scaled spring rainfall as a function 
of previous reproductive status on fecundity. LPY = juvenile survived 
to the Large pouch young stage, about 7 months. d Effect of scaled 
maternal relative condition on the probability of permanent emer-
gence from the pouch (PEP)
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skeletal growth, leaving fewer resources for reproduction 
(Lunn et al. 1994; Festa-Bianchet et al. 1998; Simard et al. 
2014). Growth may also be costlier for older females, as it 
diverts energy from metabolic maintenance, including anti-
oxidant protection (Alonso-Alvarez et al. 2007). Indetermi-
nate growth results in prolonged elevated cellular activity 
that may also be responsible for oxidative stress. As oxida-
tive damage accumulates, its costs may select for decreased 
growth of older individuals (Metcalfe and Monaghan 2001; 
Smith et al. 2016).

Being short as a young adult resulted in greater allo-
cation to growth during the remaining lifetime, with 
shorter females growing more than taller ones at any age. 
Marcil-Ferland et al. (2013) found that in bighorn sheep 
(Ovis canadensis), females that had experienced poor 

early conditions prolonged their growth as a strategy to 
compensate for their initial size deficit and consequently 
weaned a smaller proportion of their lambs. It is likely 
that size differences between individual kangaroos were 
maintained throughout life and resulted at least partly from 
poor conditions during early ontogeny (Madsen and Shine 
2000; Hamel et al. 2009b), impacting other life-history 
traits. Indeed, shorter adult females could have survived 
harsher early conditions and, consequently, have reduced 
the early somatic growth (Sæther 1997; Pettorelli et al. 
2002). We found that adult growth rates were affected by 
climatic factors, since winter rainfall appeared to reduce 
subsequent leg growth and that shorter females had lower 
reproductive effort through decreased fecundity. Winter 
rain likely increased thermoregulatory costs (Parker et al. 
2009), reducing the proportion of resources available for 
growth.

Interindividual variation in relative body condition also 
explained differences in growth increments. Females in a 
better condition had higher leg growth in the following year 
than females in poor condition, after accounting for age, 
size, and inter-annual environmental differences. A greater 
amount of acquired resources allows more energy to be allo-
cated to various functions and variable resource acquisition 
may partly account for changes in allocation to somatic func-
tions (van Noordwijk and de Jong 1986; Parker et al. 2009). 
In the same population, females that had faster bites rates 
also had higher mass gain (Gélin et al. 2016a), suggesting 
heterogeneity in ability to acquire resources. Skeletal growth 
may be a reliable index of resource acquisition and be asso-
ciated with other fitness-related traits (Beauplet and Guinet 
2007; Gélin et al. 2016b).

Growth rates of older females appeared independ-
ent of reproductive status, but growth of younger females 
decreased by up to 34% if they reproduced, suggesting a 
short-term allocation trade-off between growth and repro-
duction for females with the fastest growth. In female com-
mon frogs Rana temporaria, no trade-offs between growth 
and reproduction were identified (Lardner and Loman 2003), 
whereas short-term trade-offs between these traits were iden-
tified in young female bison (Green and Rothstein 1991) and 
in wild Atlantic cod (Gadus morhua) (Folkvord et al. 2014). 
In our study population, Gélin et al. (2016b) found posi-
tive long-term correlations of reproduction with leg growth; 
however, they did not account for age. They also showed that 
contracepted females gained more mass and grew more than 
females that could reproduce. Our results suggest an age-
specific trade-off between growth and reproduction, after 
accounting for individual heterogeneity (van Noordwijk and 
de Jong 1986; Heino and Kaitala 1999), resulting in a size 
advantage for the early reproduction. Further investigation 
is needed to understand why older females apparently do 
not face this trade-off. Growth increments of older females 

Fig. 4  Model-averaged effect of age as a function of a initial body 
size and b reproductive status on annual leg growth (mm) in female 
kangaroos at the Wilsons Promontory National Park, Victoria, Aus-
tralia, from 2008 to 2016. Estimates for average leg length  ±  1 SD 
and current reproductive status (LPY = juvenile survived to the Large 
pouch young stage, about 7 months) are shown by lines and 95% CIs 
are represented by darkened bands. Scaled female age 0 = 8 years
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are small, however, limiting the power to detect differences 
in this age group.

In conclusion, we identified a positive effect of body size 
on growth and a steep trade-off between skeletal growth 
and reproduction, with the highest reproductive costs of 
somatic growth occurring for young and short females. We 
suggest that strong cohort effects are likely to explain dif-
ferences in age-specific reproductive effort, since the early 
life conditions may have long-term consequences on future 
age-specific growth rates of female kangaroos. Females with 
rapid early growth could start to reproduce earlier and pos-
sibly maintain that advantage over the lifetime. A test of this 
hypothesis will require continued monitoring of known-aged 
individuals.
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