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Estimating genome-wide heterozygosity: effects of
demographic history and marker type

JM Miller1, RM Malenfant1, P David2, CS Davis1, J Poissant3, JT Hogg4, M Festa-Bianchet5 and DW Coltman1

Heterozygosity–fitness correlations (HFCs) are often used to link individual genetic variation to differences in fitness. However,
most studies examining HFCs find weak or no correlations. Here, we derive broad theoretical predictions about how many loci
are needed to adequately measure genomic heterozygosity assuming different levels of identity disequilibrium (ID), a proxy for
inbreeding. We then evaluate the expected ability to detect HFCs using an empirical data set of 200 microsatellites and 412
single nucleotide polymorphisms (SNPs) genotyped in two populations of bighorn sheep (Ovis canadensis), with different
demographic histories. In both populations, heterozygosity was significantly correlated across marker types, although the
strength of the correlation was weaker in a native population compared with one founded via translocation and later
supplemented with additional individuals. Despite being bi-allelic, SNPs had similar correlations to genome-wide heterozygosity
as microsatellites in both populations. For both marker types, this association became stronger and less variable as more
markers were considered. Both populations had significant levels of ID; however, estimates were an order of magnitude lower
in the native population. As with heterozygosity, SNPs performed similarly to microsatellites, and precision and accuracy of the
estimates of ID increased as more loci were considered. Although dependent on the demographic history of the population
considered, these results illustrate that genome-wide heterozygosity, and therefore HFCs, are best measured by a large number
of markers, a feat now more realistically accomplished with SNPs than microsatellites.
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INTRODUCTION

Individual heterozygosity can be easily measured using genetic
markers and is often used as proxy for inbreeding (Hansson and
Westerberg, 2002; Balloux et al., 2004). Many studies have examined
the relationship between individual genetic diversity and fitness using
heterozygosity–fitness correlations (HFCs). HFCs appeal to wildlife
and conservation biologists who cannot easily reconstruct pedigrees
and directly measure inbreeding in natural populations, especially for
endangered species (Balloux et al., 2004; Grueber et al., 2008;
Chapman et al., 2009). Meta-analyses of HFCs, however, have
revealed that effect sizes are often weak (Coltman and Slate, 2003;
Chapman et al., 2009; Szulkin et al., 2010). The modest numbers of
genetic markers typically employed may provide inaccurate estimates
of genome-wide heterozygosity. It is also unclear whether different
types of markers provide similar information content.

Microsatellites have been the most commonly used markers to
investigate HFCs. They are relatively abundant in the genome and are
highly polymorphic. However, their mutational mechanism is not
well understood, and the high mutation rate likely leads to elevated
levels of homoplasy, which can underestimate true heterozygosity
(Hansson and Westerberg, 2002). In addition, the process of isolating
and characterizing novel loci often selects for the most polymorphic
markers, resulting in ascertainment bias and an upwardly skewed
estimate of genome-wide diversity (Brandstrom and Ellegren, 2008).

Despite their growing use in molecular ecology and evolutionary
biology, single nucleotide polymorphisms (SNPs) have been less
widely used in HFC studies, perhaps because they are almost
exclusively bi-allelic. However, they have some advantages over
microsatellites: they are more abundant in the genome, have a well-
understood mutational mechanism with low levels of homoplasy and
are amenable to high throughput genotyping (Morin et al., 2004).
Several authors contend that SNPs may be more suitable than
microsatellites for HFCs. Tsitrone et al. (2001) used extensive
simulation studies to examine the effect of different mutational
patterns (corresponding to SNPs and microsatellites) and demo-
graphic history on the expected correlation between heterozygosity
and fitness. Their results point to a complex interplay between these
two factors. The high mutation rate of microsatellites should
make them more suitable to detect HFCs that result from recent
inbreeding due to crosses between relatives or small population size.
The lower mutation rates typical of SNPs may make them better than
microsatellites to detect HFCs resulting from ancient inbreeding, such
as when two subpopulations accumulate genetic differentiation
during a long period of isolation and then come back into contact
(Tsitrone et al., 2001). Chakraborty (1981) and DeWoody and
DeWoody (2005) argued that correlations between heterozygosity at
a set of loci and genomic heterozygosity would be high only when the
set of marker loci represents a high fraction of all polymorphisms in
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the genome. However, they modeled populations with no inbreeding
and no correlations among loci, a condition under which HFC does
not occur unless the marker loci themselves are coding for fitness
traits, which is not the case for most recently published HFC studies.
It remains unclear whether many markers with low genetic diversity
(SNPs) or fewer markers with higher diversity (microsatellites) are
more suitable to explore general-effect HFCs. This question becomes
important as new technologies allow for the development of larger
genome-wide marker sets of both SNPs and microsatellites (Baird
et al., 2008; Davey et al., 2011).

Studies of HFCs commonly use 10–30 loci (Chapman et al., 2009).
However, as the demographic history of a population will heavily
influence correlations in marker heterozygosity within individuals
(Ljungqvist et al., 2010; Szulkin et al., 2010), such modest numbers
of markers may sometimes be insufficient (Balloux et al., 2004;
Väli et al., 2008; Ljungqvist et al., 2010; Forstmeier et al., 2012).
For example, Väli et al. (2008) looked at the correlation between
heterozygosity at 10–17 microsatellites and allelic diversity in
10 introns across eight populations of carnivores. They found
a positive correlation between average heterozygosity and allelic
diversity among populations but not between individual hetero-
zygosity at SNPs and microsatellites. In general, HFCs are not
expected within populations without measurable identity disequili-
brium (ID), a correlation in identity by descent among markers (Slate
et al., 2004; David et al., 2007; Szulkin et al., 2010). ID arises from
departures from random mating (for example, inbreeding) or
demographic events (for example, a population bottleneck or
admixture) that cause the heterozygosity of loci to become associated
(Bierne et al., 2000; Szulkin et al., 2010). In the absence of ID, HFCs
will be detected only if one or more markers are directly associated
with a gene influencing fitness, so-called local or direct effects
(Hansson and Westerberg, 2002). These direct effect correlations are
difficult to detect because they depend on the specific marker set used
in a study.

Here, we examine the contrasting effects of the number of
markers considered and marker type on the ability to detect
general-effect HFCs. We first use existing models of HFC to derive
broad theoretical predictions about how many loci are needed
to adequately measure genomic heterozygosity assuming different
levels of inbreeding and marker genetic diversity. We then use
large sets of both microsatellites and SNPs genotyped in two
populations of bighorn sheep (Ovis canadensis) to approach
this question empirically. Our two study populations have very
different demographic histories: one was founded in the 1920’s
with 12 individuals and experienced a prolonged bottleneck post
founding, then recent admixture following a ‘genetic rescue’ where
15 individuals were intentionally introduced into the population.
The other is a native population with no genetic evidence of a
comparable bottleneck. These contrasting histories should affect the
magnitude of ID and hence our ability to detect HFCs. In the
population subject to ‘genetic rescue’, ID is expected to be higher,
arising both from historical inbreeding and admixture following
the introductions. In the native population, ID will likely track
demography, arising if heterozygosity decreases because of inbreeding.
Therefore, power to detect HFCs should be greater in the bottle-
necked population than the native one. To test these hypotheses,
we first sought to measure the strength of correlations between
estimates of heterozygosity from microsatellites and SNPs within
individuals. We then examined how many markers are needed to
accurately reflect genome-wide heterozygosity and ID in these two
populations.

Theory
General-effect HFCs arise as the product of two correlations: the
correlation between fitness (W) and inbreeding (f), and the correla-
tion between f and heterozygosity (h) (Slate et al., 2004; Szulkin et al.,
2010), such that:

r W ; hð Þ ¼ rðW ; f Þ � rðf ; hÞ: ð1Þ

For the purposes of this paper, we do not consider the correlation
between W and f. Rather, we focus on the power of different marker
sets to detect the correlation between h and f.

Two sources of sampling variance may affect HFCs. One is the
sampling of individuals: if a small sample is taken in a population that
contains a small proportion of inbred individuals, the proportion of
inbred individuals in the sample is subjected to a large variance that
directly affects HFC estimates. The estimated HFC will be stronger or
weaker than true the HFC in the population simply because the
proportion of inbred individuals in the sample happens to be higher
or lower than their frequency in the population. This source of error
can be large but the only way to reduce it is to sample more
individuals. The second source of variance arises from the fact that
heterozygosity measured at a set of marker loci is not perfectly
correlated with genomic heterozygosity and/or with individual
inbreeding level. This error depends on the characteristics of the
marker loci (number and genetic diversity). We will mainly concen-
trate on this second type of error, assuming that all efforts have been
made to reduce the first source of error.

The problem is now to estimate how well inbreeding is measured
by (or correlated to) heterozygosity in a sample of markers. We
consider standardized heterozygosity (sensu Coltman et al. (1999)
denoted H** for consistency with notations in Szulkin et al. (2010)) at
a set of loci L, of size A, where hi is the observed heterozygosity at
locus i and upper bar denotes expectations

H��A ¼
P

i2A hiP
i2A hi

¼
P

i2A hi

LAhA

ð2Þ

based on Szulkin et al. (2010), the expected correlation between H**
and inbreeding level (f) is

r2 H��A ; f
� �

¼ g2

s2ðH��A Þ
; ð3Þ

where g2 is the covariance of heterozygosity between markers
standardized by their average heterozygosity (David et al., 2007) and

s2ðH��A Þ ¼
�i2Ahið1� hiÞ þ 2g2��ðj4iÞ2Ah ihj

ðLAhAÞ2
: ð4Þ

Assuming that all loci in the set LA have the same average
heterozygosity hA (for simplicity), this gives

r2 H��A ; f
� �

¼ LAg2hA

1� hAþ LA� 1ð Þg2 hA

ð5Þ

from this it can be seen that the correlation approaches unity as the
number of markers increases, and depends mostly on the product of
the number of loci and their average heterozygosity: 100 loci with
h¼ 0.1 are equivalent to 20 loci with h¼ 0.5. The rate at which the
correlation approaches 1 increases with the ID (represented by g2).
When g2 is null, the correlation is necessarily zero because inbreeding
does not vary in the population. In such cases, trying to estimate
genome-wide heterozygosity from a small set of markers is pointless
because all the variance comes from sampling error.

Often one does not have an independent measure of inbreeding
(for example, pedigrees), and therefore the above formula cannot be
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checked directly. Instead, what can be performed (and will be
performed below using real data) is (i) to check the consistency
between two different subsets of marker loci (for example, SNPs and
microsatellites) and (ii) to check how fast estimates of heterozygosity
based on increasing numbers of loci converge to the most precise
estimate available (which uses all loci). Theoretical predictions can be
obtained for (i) and (ii). The first is simply the correlation between
heterozygosities at two non-overlapping sets of loci; it can be simply
computed based on the assumption (underlying the general-effect
model) that this correlation emerges only as a result of the common
dependency of heterozygosities in both sets of markers on the extent
of inbreeding. Therefore,

r2 H��A ;H
��
B

� �
¼ ðg2Þ2

s2ðH��A Þs2ðH��B Þ
¼ r2 H��A ; f

� �
r2 H��B ; f
� �

: ð6Þ

The quantity relevant to point (ii) is the correlation between
heterozygosity at L loci and heterozygosity at a subset (S) of these
loci, which contain a fraction pS of the total number of loci. For
simplicity, we model a situation in which there are no missing data
and all individuals are typed at the same set of loci. If individuals are
typed at sets of loci that substantially differ in their average
heterozygosity correlations will be reduced; however, this is unlikely
to be the case unless substantial amounts of data are missing. As
correlations are insensitive to scaling by a constant, we can work here
with raw heterozygosities H (not standardized heterozygosity H**).
Using raw heterozygosity, total heterozygosity H is the sum of
heterozygosity at the S loci (HS) and at the remaining loci (HR). Thus,

r H��S ;H
��� �
¼ r HS;Hð Þ ¼ COV HS;Hð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 HSÞs2ðHð Þ
p

¼ COV HS;HSþHRð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 HSÞs2ðHð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 HSð Þ
s2ðHÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 HRð Þ
s2ðHÞ

s
r H��S ;H

��
R

� �
ð7Þ;

where s2(HS) is the numerator of Equation 4 (s2(HR) and s2(H) can
be computed similarly, making the summations over the appropriate
sets of loci). Assuming that all loci have the same heterozygosity h one
obtains, after some algebra

r2 H��S ;H
��� �
¼ pS 1þð1� pSÞ

Lhg2

1� hþ hg2ðLpS� 1Þ

 !
ð8Þ

in this formula, one can distinguish two terms: the first is simply the
proportion of loci included in the subset (pS) and reflects the fact that
subset S will always capture a proportion of the variance in total
heterozygosity at all loci because they are part of the total. The ability
of the S subset to inform about the other loci (hence about the
genome in general) is reflected by the second term, which relies on
the existence of ID (g2): through this disequilibrium, the loci in S
inform about the state of other loci and hence capture a more than
proportional share of total variance in heterozygosity.

MATERIALS AND METHODS
Study populations
We examined patterns of heterozygosity in bighorn sheep at the National Bison

Range (Montana, USA; NBR) and at Ram Mountain (Alberta, Canada; RM).

In both populations, long-term studies follow individuals throughout their

lives. The National Bison Range population was founded in 1922 via

translocation of 12 individuals from Banff National Park (Alberta, Canada).

Individual monitoring started in 1979, with genetic sampling beginning in

1988. Beginning in 1985, NBR experienced a ‘genetic rescue’ via intentional

translocation of 15 individuals from neighboring populations to prevent local

extinction after years of isolation and inbreeding (Hogg et al., 2006; Miller

et al., 2012). Prior to the introduction, census size and growth rate had been

steadily declining (average census size of 48 sheep between 1922 and 1985).

Following the supplementation, there has been an increase both in census size

(142 sheep in late 2012) and genetic diversity (Hogg et al., 2006; Miller et al.,

2012).

In contrast, Ram Mountain is a native population in which individual-based

monitoring began in 1972 with genetic sampling starting in 1988 (Jorgenson

et al., 1997; Coltman et al., 2002). Between 1988 and 2010, census size

fluctuated between 38 and 210 sheep, declining recently because of low

recruitment (Jorgenson et al., 1997) and cougar (Puma concolor) predation

(Festa-Bianchet et al., 2006).

Marker genotyping and selection
SNP genotypes used in this study were generated by typing 27 individuals from

NBR and 50 from RM on the OvineSNP50 BeadChip (Miller et al., 2011),

yielding 853 variable loci. For this study, we excluded loci that were genotyped

in o90% of individuals in both populations (N¼ 38), had o5% minor allele

frequency (N¼ 392) and did not conform to Hardy–Weinberg expectations

following a Bonferroni correction (N¼ 2). We also excluded any loci mapped

to the X chromosome (N¼ 9). This resulted in a final data set of 412 SNPs

(Supplementary Table 1). We included loci polymorphic in one population but

monomorphic in the other. Note that because of their discovery via cross-

species application of the OvineSNP50 BeadChip, the SNPs used in this study

are widely distributed in the genome, and are mostly intergenic as few are

expected to be in or near genes based on annotation of the domestic sheep

genome (Miller et al., 2011).

Microsatellite loci used in analyses were a subset (N¼ 200; Supplementary

Table 2) of those used to construct a bighorn sheep linkage map (Poissant

et al., 2010). Primer information and PCR conditions for the markers can be

found in Poissant et al. (2009, 2010) and references therein. All loci conformed

to Hardy–Weinberg expectations following a Bonferroni correction. Loci were

retained only if they were genotyped in both populations and had o25%

missing genotypes in the samples from either population. As with the SNP set,

loci on the X chromosome were excluded.

In total, 26 individuals from NBR and 48 from RM were genotyped at both

sets of markers and included in subsequent analyses. The individuals from

NBR were born between 1981 and 2004 and include descendants of the

original founders of the population (N¼ 4), transplanted individuals (N¼ 2)

and their progeny (N¼ 20).

Statistical analyses
We calculated individual standardized multilocus heterozygosity (stMLH)

following Coltman et al. (1999). The relationship between individual stMLH

from each marker set was assessed using reduced major axis regression with

1000 jackknife iterations, as implemented in RMA version 1.21 (Bohonak and

van der Linde, 2004). Reduced major axis regression was chosen to account for

the uncertainty associated with stMLH measures used as both dependent and

independent variables. For resampling tests, 100 random subsets of markers

were sampled without replacement from the full data sets using the ‘sample’

function in R version 2.13.0 (R Development Core Team, 2005). For

microsatellites, subsets of 5, 10, 20, 30, 50, 75, 100, 125, 150 and 175 loci

were extracted, whereas for SNPs the subsets consisted of 20, 50, 75, 100, 150,

200, 250, 300, 350 and 400 loci. We then calculated stMLH for each subset

using a custom Perl script. The coefficients of determination (r2) were

compared between the stMLH calculated for each subset and a total stMLH

calculated from the concatenation of the SNP and microsatellite data sets (all

612 loci). In addition, we calculated r2 between each subset and total stMLH

for all loci of their respective marker type. We then compared these results to

the theoretical predictions described in the previous section.

Estimates of ID and expected power to detect HFCs
To measure ID, we used the program RMES (David et al., 2007) to calculate

the g2 statistic. Significant covariance among marker genotypes can be

attributed to inbreeding, admixture or a bottleneck (David et al., 2007;
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Szulkin et al., 2010). Assessment of significant levels of ID (g2 40) utilized

1000 resampling iterations. Calculations were performed for both populations

on the full microsatellite set, the full SNP set, the concatenated marker set and

all marker subsets used in the stMLH resampling calculations. We also

examined the effect of the number of individuals sampled on the accuracy

of g2 estimates. For this analysis, we bootstrapped both the full microsatellite

and full SNP data sets in each population, generating 100 replicates containing

different numbers of individuals: 5, 10, 20, 30, 50 or 100 individuals.

To explore the power of different marker sets to detect HFCs, we calculated

the expected correlation between f and stMLH using Equation 3 based on

empirical estimation of variance in heterozygosity as well as its theoretical

value based only on the number and average heterozygosity of the markers

(Equation 5). Equation 5 has the advantage that it can be applied to assess the

power of a study before actually performing it, as it requires only

approximated parameter values. As with our estimates of g2, we calculated

r2(f, h) for the full SNP, microsatellite and concatenated data sets, as well as all

subsets. When the estimate of g2 was negative we set r2(f, h) to 0.

RESULTS

Summary statistics of markers
In NBR, the average (±s.d.) minor allele frequency for SNP loci was
0.197 (±0.160), and average observed heterozygosity (Ho) was 0.279
(±0.202). In RM, average minor allele frequency was 0.212 (±0.151)
and Ho 0.292 (±0.178). For microsatellite loci, Ho was 0.643
(±0.161), and number of alleles per locus ranged from 2 to 9
(average 4.39±1.43) in NBR, whereas in RM Ho was 0.610 (±0.157)
and the number of alleles per locus ranged from 2 to 10 (average
4.21±1.48).

Estimates of ID and expected power to detect HFCs
All estimates of g2 based on total marker sets were greater than zero
for both populations (Po0.001; Table 1). However, g2 was much
stronger in NBR than RM. Across both populations, the full SNP set
produced higher estimates of g2 than the full microsatellite set, and
the combined data sets were intermediate. Our subsampling analyses
showed that average values of g2 on par with the genome-wide
estimates of that same marker type were obtained even when few
markers were considered (Figure 1a–d). However, there was con-
siderable variation around these estimates. For example, in RM the
s.d. estimates were larger than the average values of g2 when fewer
than 75 microsatellites or 150 SNPs were examined (Figure 1b and d).

Bootstrapping the full data sets similarly showed that a stable
average value of g2 can be estimated with small sample sizes; however,
larger sample sizes increase the precision (Supplementary Table 3).

Table 1 Estimate of identity disequilibrium (g2) and expected r2

between inbreeding (f) and stMLH (HA**) for the different full marker

sets in each population of sheep

s.d. of stMLH g2 s.d. of g2 Expected r2 (HA**, f)

NBR

Microsatellites 0.22245 0.05554 0.02773 0.95695

SNPs 0.23662 0.06481 0.03081 0.91378

Combined 0.24891 0.06074 0.02920 0.96095

RM

Microsatellites 0.07086 0.00198 0.00412 0.38321

SNPs 0.09843 0.00456 0.00519 0.43703

Combined 0.07093 0.00309 0.00254 0.54937

Abbreviations: SNP, single nucleotide polymorphism; stMLH, standardized multilocus
heterozygosity.
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One might have expected the effects of increasing sample size to be
more apparent in NBR, where the data set contains a few highly
inbred individuals and the chances of sampling them would therefore
lead to large s.d. around the estimates of g2. However, when scaled as
a percentage of the average estimate, the effect of sampling is greater
for RM than NBR. Even when 100 individuals were assumed, s.d.
values representing 414% of the average g2 estimate in NBR and
430% in RM were seen.

Expected r2 between f and stMLH for the various full marker sets
(Table 1) were stronger in NBR than RM. In both populations, the
strongest r2 was seen from the combined marker data set. The
expected r2 increased and the variation around estimates decreased as
the number of markers increased (Figure 2a–d). There was an
apparent upward bias of the r2 between f and stMLH when measured
by the full marker sets compared with the subsets. This bias is likely
an artifact given that there is only one estimate based on the full
marker sets (rather than 100 permutations) and that the correlation is
based on a g2 statistic that still has error associated with it (Table 1).

Correlations between marker types and among subsets
Individual stMLH was significantly positively correlated between
marker types in both populations (Figure 3). However, the correlation
was much stronger in NBR (NBR r¼ 0.954, t24 ¼ 15.656, Poo0.001;
RM r¼ 0.360, t46 ¼ 2.620, P¼ 0.011). Based on Equation 6, the
expected correlations were r¼ 1.15 and r¼ 0.44 for NBR and RM,
respectively. Slight differences between the predicted and observed
values (as well as the r41) likely arise because the combined g2 value
is measured with error (Table 1). To ensure that the larger sample size
in RM was not the main driver of the difference in correlation

between RM and NBR we jackknifed our data from RM resampling
100 sets of 26 individuals, this yielded an average correlation of
0.355±0.121 (s.d.).

In our resampling analyses, r2 values were stronger in NBR
than RM regardless of the number or type of markers examined
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(Figures 4a–d). In both the SNP and microsatellite data sets, the
correlation with the total measure of stMLH strengthened with
increasing number of markers (Figures 4a and c). In NBR, correlations
between microsatellite subsets and total stMLH were higher than those
for an equal number of SNPs (Figure 4c). However, an asymptote of
strong correlation (r240.9) was reached with as few as 75 micro-
satellites or 200 SNPs. These differences between marker types
disappeared when marker subsets were compared with stMLH of
only that same marker type and scaled as a proportion of the total
number of either SNPs or microsatellites considered (Figure 4d). For
RM, when equal numbers of markers were compared, microsatellites
produced a marginally higher average correlation to total stMLH than
SNPs (Figure 4a), although these differences were not significant. The
two marker types gave near-identical correlations when marker subsets
were compared with stMLH values from only the same marker type
(Figure 4b). Average correlations to marker-specific estimates of
stMLH were stronger than when subsets were compared with total
stMLH (average increase of 0.12 for SNPs and 0.20 for microsatellites).
For both populations, all empirical correlations exceeded the null
expectations and closely paralleled predicted correlations (Figure 4).

DISCUSSION

Influence of population history
As expected, across all analyses the strength of association between
marker heterozygosities as well as the expected ability to detect HFCs

was highly dependent on the demographic history of the population
(Ljungqvist et al., 2010; Szulkin et al., 2010). Bighorn sheep tend to be
philopatric and have a highly polygynous mating system, in which a
few dominant males sire the majority of offspring (Hogg and Forbes,
1997; Coltman et al., 2002). Thus, even in a native population such as
RM a certain level of ID is to be expected. In addition, RM is
relatively isolated and rarely receives immigrants (Rioux-Paquette
et al., 2010), furthering the likelihood of non-random association of
alleles because of inbreeding. Disequilibrium is even more likely in
NBR given its population history. Descendants of NBR founders are
expected to have low overall genetic diversity after years of inbreeding,
translocated individuals from neighboring herds will have relatively
higher levels of diversity and their progeny are expected to have
the highest heterozygosity as a result of the admixture between
the founder and translocated individuals (Hogg et al., 2006; Miller
et al., 2012).

Theory predicts that population history as well as mating system
(that is, partial inbreeding or selfing), as summarized through the g2

parameter, determines how well heterozygosity at a set of markers
reflects heterozygosity at other loci and, by extension, genomic
heterozygosity and inbreeding (Szulkin et al., 2010, our Equations
3, 5 and 6). Theoretical predictions correctly match the observed
correlations between heterozygosity at SNPs and heterozygosity at
microsatellites in our data. Although significant correlations were seen
in both populations, it was much tighter in NBR (Figure 3).
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Figure 4 Average r 2 between marker subset stMLH and genome-wide stMLH. Each subset was generated by sampling markers from the total data set

100 times; error bars show s.d. Plots A and C show correlations for SNPs (open squares) and microsatellites (filled triangles) when all 612 loci are

considered in RM and NBR, respectively. Plots B and D show correlations when subsets are compared with stMLH exclusively from the same marker type in

RM (b) and NBR (d). Note that the x axis is now scaled as a proportion of the total number of either SNPs or microsatellites. Predicted correlations based

on Equation 8 are shown for SNPs (solid lines) and microsatellites (dotted lines), dashed lines show predicted correlations among subsets in the absence of

identity disequilibrium.

Estimating genome-wide heterozygosity
JM Miller et al

245

Heredity



In contrast, Väli et al. (2008) found no significant correlation between
individual heterozygosity at SNPs and microsatellites at the level of
the individual in four populations of wolves (Canis lupus) and one of
coyotes (C. latrans). However, both of these species have high
dispersal rates and large effective population sizes (Pilot et al.,
2006), which may not allow for such correlations to develop. In
addition, Väli et al. (2008) used only 10–17 microsatellites and 25–51
SNPs in 10 introns, which our results suggest may not have had the
power to detect an association in a population with low g2 (for
example, 0.001–0.005). The contrasting effect of demographic history
is equally apparent when trying to estimate genome-wide hetero-
zygosity from a subset of markers (Figure 4).

Interaction between the number of markers and marker type on
correlations in stMLH
In NBR, microsatellites were more highly correlated to total stMLH
than SNPs when equal numbers of markers were compared: 20
microsatellites predicted inbreeding as well as 75 SNPs—as expected
given their higher average heterozygosity (0.643 compared with 0.279)
and our theoretical equations (Equation 8). However, even a small
number of either type of marker was highly correlated with
inbreeding level and with total heterozygosity at all markers because
of the high g2. The situation was slightly different in RM. Here, SNPs
and microsatellites gave essentially the same correlations to our total
measure of stMLH when equal numbers of markers were compared.
However, given the low g2, a much larger number of loci (micro-
satellites or SNPs) is needed to adequately measure inbreeding in RM.

In short, microsatellites are more informative than SNPs because
they have higher genetic diversity per locus; however, to find the most
efficient strategy, one must consider that it is now becoming
technically easier to develop and type a large number of SNPs than
an equivalent number of microsatellites (Baird et al., 2008; Davey
et al., 2011; Guichoux et al., 2011). These results agree with previous
theoretical and empirical studies that suggested that highly hetero-
zygous multi-allelic markers will have higher correlation between
MLH and genome-wide heterozygosity than bi-allelic ones (Slate
et al., 2004; Ljungqvist et al., 2010; Online Appendix 2 in Szulkin
et al., 2010; Forstmeier et al., 2012) except in special cases (Tsitrone
et al., 2001).

One factor that could seem to limit the robustness of our
conclusions is that correlations to total heterozygosity could be biased
because the data set contains a larger number of SNPs than
microsatellites (412 versus 200 loci). We do not feel that this is a
problem for several reasons. First, individual heterozygosity between
the two marker types was correlated (Figure 3) and should therefore
show the same patterns no matter the ratio of loci examined.
Moreover, if the relative proportion of markers biased our estimates,
one would expect correlations to the measure of total stMLH to be
constrained by the marker’s abundance in the total data set—for
example, r2o0.33 for microsatellites. Figure 4 shows that this is not
the case: both sets of loci quickly rose to essentially perfect
correlations in NBR and increased to levels well above their relative
proportions in RM. Finally, in general, SNPs are more abundant in a
genome than microsatellites, and although the ratio is not 2:1, our
data set reflects this difference in abundance. Together, these points
suggest that there should not be any substantial bias based on the
relative composition of the markers.

ID and expected correlations between f and stMLH
On average, modest numbers of markers seemed to accurately
estimate the levels of ID; however, variability was high when only a

few markers were considered. Several recent studies have estimated ID
for both wild and captive populations (Küpper et al., 2010; Borrell
et al., 2011; Grueber et al., 2011; Olano-Marin et al., 2011; Jourdan-
Pineau et al., 2012; Wetzel et al., 2012). In all but one case (Olano-
Marin et al., 2011), these estimates were nonsignificant, even in the
highly endangered takahe (Porphyrio hochstetteri) that had experi-
enced a bottleneck reducing the population to 17 individuals
(Grueber et al., 2011). However, all of the studies showing non-
significant results used between 7 and 24 microsatellite loci (average
18.2), which we have shown can give an inaccurate picture of
diversity, depending on the specific loci examined and the demo-
graphic history of the population. In contrast, Olano-Marin et al.
(2011) used 80 microsatellites to study a wild population of blue tits
(Cyanistes caeruleus).

Time to move towards SNPs for use in HFCs?
Our results suggest that SNPs are more suited for HFCs than
previously thought. First, significant correlations between individual
stMLH at SNPs and microsatellites indicate that there is no loss of
information when using a bi-allelic rather than a multi-allelic marker
to estimate heterozygosity. Second, SNPs may be more suited for
examining the various hypotheses that underlie HFCs, such as direct
effects and local effects (Hansson and Westerberg, 2002), given that
they are more abundant in the genome than in microsatellites and can
be more readily genotyped at ultra-high density. However, to perform
the same job as microsatellites, SNPs need to be more numerous as
they are on average less heterozygous. The exact number of markers
needed to obtain high correlations depended heavily on the demo-
graphic history of the population. For populations such as NBR that
have experienced a severe bottleneck or admixture fewer markers will
be needed to obtain significant g2 estimates and detect HFCs. In this
situation, it will be more beneficial for researchers to type additional
individuals, getting an accurate estimate of the variance in inbreeding
and fitness, rather than typing more markers in fewer individuals. For
populations with no history of a bottleneck or severe inbreeding, such
as RM, significantly more markers will be needed to accurately
estimate genome-wide heterozygosity. It is then questionable whether
lots of effort should be invested into typing the required number of
markers, whatever their type, given that the signal (HFC and
inbreeding) is necessarily very weak in such situations. Our equations
can be directly used to assess the required number of loci needed to
achieve a given accuracy in the measure of inbreeding (or genomic
heterozygosity), provided a value of g2 is available (or can be
estimated from preliminary data with fewer loci). For example, in
RM using the combined g2 estimate from all markers (the most
precise value available), Equation 5 can be used to predict that no less
than 1853 microsatellites or 7053 SNPs would be needed for stMLH
to be highly correlated (r2¼ 0.9) to inbreeding.

Although SNPs are still moderately expensive to develop for wild
species, new methods allow rapid discovery of large marker panels
(Baird et al., 2008; Davey et al., 2011) at diminishing costs. Once
discovered, new technologies, such as array-based genotyping assays
(Shen et al., 2005) and genotype-by-sequencing approaches (Baird
et al., 2008), will allow for SNP data sets to be rapidly genotyped in
many individuals. Comparable methods for scaling up the genotyping
of microsatellites are not currently available.

Although we were unable to directly compare SNPs and micro-
satellites in terms of their ability to detect HFCs for specific traits
because of the small number of individuals genotyped at the sets of
SNPs and microsatellites used here, we now have an indication of the
number of markers that would be needed for future efforts. More
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broadly, our results highlight that accurate calculations of stMLH,
assessment of ID, and thereby detection of HFCs will likely require a
large number of markers, be they SNPs or microsatellites. However,
the exact number is highly dependent on the demographic history (or
mating system) of the population being examined, the key parameter
being the ID (which can be estimated with g2). Efforts should be
directed towards precisely estimating this parameter in natural
populations. To this end, assuming that the number of loci available
in population genetic studies will continue to increase, the main
limitation will become the sample size in terms of numbers of
individuals.
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Küpper C, Kosztolányi A, Augustin J, Dawson DA, Burke T, Székely T et al. (2010).
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