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Abstract In males, the acquisition and development of
behavioral and morphological secondary sexual traits typi-
cally depends on testosterone and correlates with mating
success. Testosterone level could affect competition for
mates and thus be a target of sexual selection. We sought
to relate testosterone levels to male mating competitiveness,
by teasing apart the relationships between testosterone, be-
havior, and growth before the mating period. We monitored
24 adult bighorn rams (Ovis canadensis) at Ram Mountain,
Alberta, from 2008 to 2011. Using linear mixed models, we
tested the relationships between testosterone metabolites in
feces, social rank, and both growth and size of two sexually
selected traits: horns and body mass. The correlation between
testosterone and social rank varied with age. Testosterone and
rank were weakly and negatively correlated for young rams,
positively correlated for prime-aged rams, and negatively
correlated for older rams. Although testosterone had an in-
creasingly positive effect on total horn length until 8 years of
age, we could not detect any effects on annual growth rate of
horns or body mass. Testosterone may be related to male’s
ability to compete for mates through its relationship with
behaviors determining social rank, rather than by influencing
the development of morphological traits. Differences in

testosterone levels among competitors may be a proximate
cause of variance in fitness.
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Introduction

In polygynous species, some male armaments and orna-
ments such as horns, antlers, and colors are under sexual
selection as they determine access to mates and affect re-
productive success (Le Boeuf 1974; Andersson 1994;
Coltman et al. 2002; Mainguy et al. 2009). Expression of
these traits is often associated with the androgen testoster-
one (Becker and Breedlove 2002). For example, in birds
testosterone correlates with the length of ornamental tail
feathers (McGlothlin et al. 2008), and affects plumage pat-
terns (but see Kimball and Ligon 1999; Gonzalez et al.
2001; Strasser and Schwabl 2004; Garamszegi et al.
2005). In mammals, testosterone increases muscle volume
and body mass (Kousteni et al. 2001, 2002; Hartgens and
Kuipers 2004). Inter-individual differences in testosterone
levels during the growing season could therefore influence
the development of sexually selected traits, and be under
sexual selection.

Testosterone also influences sexually selected behaviors
(Becker and Breedlove 2002), by promoting aggression and
territoriality (McGlothlin et al. 2007; Hau and Beebe 2011;
Pasch et al. 2011), courtship (Pinxten et al. 2003), domi-
nance displays, and mate searching (Mills et al. 2009). The
relationship between testosterone levels and mating behav-
iors, however, may not be universal. For instance, no corre-
lation was found between testosterone and social rank in
Himalayan tahr males (Hemitragus jemlahicus, Lovari et al.
2009). Alternatively, the “challenge hypothesis” (Wingfield
et al. 1990) predicts that testosterone levels can rise in
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response to competition for mates. The meta-analysis of
Hirschenhauser and Oliveira (2006), however, provided no
clear evidence of an effect of male–male agonistic interac-
tions on variation in testosterone (see also Apfelbeck and
Goymann 2011).

High testosterone levels can promote competiveness de-
spite their potential cost (Folstad and Karter 1992). In several
vertebrates, testosterone was associated with immunodefi-
ciency (Zuk 1996). For instance, immunocompetence and
resistance to protozoan infection were associated with in-
creased testosterone and aggressive behaviors in mice (Mus
musculus, Barnard et al. 1996; Smith et al. 1996). Skarstein et
al. (2001) showed that reproductively active male arctic charr
(Salvelinus alpinus) had higher intensities of macroparasite
infections than non-reproductive males, apparently because of
immune suppression related to the development of ornaments
and to spermatogenesis. Males therefore appear to face trade-
offs between physiological and morphological traits that may
affect their fitness. A physiological strategy involving elevat-
ed testosterone only during the mating season may reduce the
cost of testosterone-dependent immunosuppression.

Testosterone, however, can also enhance growth of body
mass (Hartgens and Kuipers 2004) and armaments (Bartoš
et al. 2009). Low levels outside the rut could thus reduce
growth of sexually selected traits. To understand its impor-
tance in mediating life history trade-offs, it is thus important
to monitor testosterone outside the breeding season and to
evaluate its effects on age-specific growth of sexually se-
lected traits. Age must be taken into account because the
growth of these traits is strongly affected by age (Bonenfant
et al. 2009; Festa-Bianchet 2012).

Although numerous studies investigated the links between
morphology, behavior, and testosterone, our understanding of
the importance of this hormone in shaping life history trade-
offs in wild animals remains limited. That is partly because no
study obtained repeated measurements of testosterone, mor-
phological and behavioral traits of known-age wild animals.
Here, we sought to quantify the relationships between fecal
testosterone levels, the establishment of social rank, horn
growth, andmass gain in wild bighorn rams (Ovis canadensis).

Bighorn sheep are highly sexually dimorphic (Leblanc et
al. 2001), polygynous, and rams can live up to 14 years. Horn
length and body mass are correlated with breeding success for
rams aged 6 years and older (Coltman et al. 2002). Social rank
increases with both age and mass, which are strongly corre-
lated, especially for young adults (Pelletier and Festa-Bianchet
2006). Horns grow from spring to autumn (Leblanc et al.
2001), while rams establish a social hierarchy (Pelletier and
Festa-Bianchet 2006). During the rut in late November and
early December, rams use rank-specific reproductive tactics.
Dominant males use a mate-guarding tactic called tending
(Hogg 1984). Tending leads to many paternities for rams in
the top 1–4 ranks of the hierarchy, but up to 40% of lambs are

fathered by subordinates (Coltman et al. 2002) that use alter-
native tactics (Hogg 1984). Little is known about the determi-
nants of breeding success for subordinate rams (Coltman et al.
2002). In the Sheep River population, testosterone was posi-
tively correlated with social rank during the rut (Pelletier et al.
2003).

Given the importance of horns, body mass, and social
rank for mating success of bighorn rams, we predicted that
testosterone levels should be positively related to social rank
outside the breeding season. We also expected that testos-
terone would be positively correlated with horn growth and
body mass gain. As morphological and behavioral sexually
selected traits vary with age, we hypothesized an age-
dependent relationship between testosterone and mating
competitiveness. Because growth rates decrease with age
(Festa-Bianchet et al. 1996; Bonenfant et al. 2009), we
predicted that the positive relationship between testosterone
and horn growth, body mass gain, and social rank should be
stronger in young than in old males.

Material and methods

Study population

Bighorn sheep on Ram Mountain (52°N, 115°W, elevation
1,080–2,170 m), Alberta, Canada, have been monitored
since 1971. Sheep are captured in a corral trap baited with
salt between mid-May and September (Jorgenson et al.
1993). All rams included in this study were marked during
their first year, and their exact ages were known. The
resighting rate of rams exceeds 95 % (Bonenfant et al.
2009), providing a very accurate measure of survival. We
only considered rams aged 2 years and older, as yearling rams
appear unable to obtain paternities (Coltman et al. 2002).

Morphological parameters

We measured horns (millimeters), mass (kilograms), and
testis (millimeters) at each capture. We measured horn base
circumference (hereafter referred to as horn base) and horn
length along the outer curvature. We standardized horn
measurements to spring (June 5th) and autumn (September
15th, see “Statistical analysis” section for details) before
analysis. Horns stop growing in winter and form a distinct
annulus, under which the new horn growth becomes evident
in the spring. We focused on the growth of the newly grown
horn increment. We defined horn growth as the yearly
increment grown from June 5th to September 15th, calcu-
lated as the difference in horn length between spring and
autumn. We applied the same definition to quantify the
growth of horn base. We obtained testis size by measuring
the diameter of one testis using a caliper (±0.5 mm). All
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scrotal measurements were taken at the largest section of the
scrotum for one testicle. This measure was taken four times
at each capture to assess repeatability. The more frequent
measure within 1 mm was recorded.

Social rank

Daily observations were conducted from June to September
2009 to 2011. Groups of males were observed until all rams
disappeared from sight. All agonistic interactions were noted.
We observed rams at a minimum distance of 400 m from
10 min to 6 h. We recorded six dyadic behaviors: eye rubbing,
front kick, displacement, butt, homosexual mount, and clash
(Geist 1971; Hogg 1987). Agonistic interactions were used to
rank each ram according to de Vries (1995), a method previ-
ously used for bighorn rams (Pelletier and Festa-Bianchet
2006). We first tested the linearity of the hierarchy using the
h′ index (de Vries 1995), which ranges from 0 for no linearity
to 1 for perfect linearity, corrected for the number of unknown
dyadic relationships. As the linearity of social hierarchies was
highly significant each year (Table 1), we then used an iterative
procedure of 1,000 randomizations to find the optimal near-
linear order of individuals (de Vries 1998). This procedure
organizes the social hierarchy by minimizing first the number
and then the strength of inconsistencies in dyadic matrices. An
inconsistency occurs when individual j dominates i, but j is
ranked below i. The strength of an inconsistency is the absolute
difference between the ranks of the individuals involved.
Predictability in the outcome of encounters between two in-
dividuals is measured by the directional consistency index
(Van Hoof and Wensing 1987). This index ranges from 0 for
dyads where each member wins half of the interactions to 1
when one individual wins all interactions. We standardized
social ranks by the yearly number of rams as 1−(rank/Nx)
were Nx is the number of rams in year x (Pelletier and Festa-
Bianchet 2006). All calculations relative to social hierarchy
were performed with Matman 1.0 (de Vries et al. 1993).

Sample collection

Fecal samples were collected at each capture. We collected
174 fecal samples from 2008 to 2011 (N=39, 50, 49, 36,

respectively). On average, we sampled each individual 7.2±
3.8 times. We recorded the date and time of collection, kept
samples at −15 °C for about 10 days, then dried them at 70 °C
(see Montiglio et al. 2012) and re-froze them to minimize
bacterial degradation during storage.

Hormone assay

We used methanol-based extraction for fecal testosterone
(Brown et al. 2004). Samples were dried for 7 days at 50 °C
then ground to ≈5±0.5 mm.Weweighed feces in clean culture
glass tubes (16×100 mm) to obtain 100±10 mg per sample,
then added 5 ml of 90 % methanol to each sample. Tubes
were vortexed at 250 rpm at room temperature for 4 h
and then at 400 rpm for 30 min. We filtered samples with
a 0.45-μm non-sterile filter fixed on a syringe and stored
at −20 °C until we measured testosterone concentration.

We performed competitive enzyme-linked immunosor-
bent assay in triplicate for each extract using a 96-well
microtiter plate (Nunc-Immuno, Maxisorp Surface; Fisher
Scientific, Pittsburgh, PA, USA). The testosterone polyclon-
al antibody (R156/7, University of California, Davis, CA,
USA) was diluted 1:10,000 in a commercial coating buffer
(CB1, ImmunoChemistry Technologies, Bloomington, MN,
USA), and 50 μl was added to each well, except the blank,
and incubated for 18 h. The next morning, we blocked plates
and rinsed them with wash buffer (distilled water with 0.2 %
of Tween-20). To perform the assay, 50 μl of standards and
samples was added to wells with the horseradish peroxidase
conjugate (tracer; 1:150,000) provided with the kit and
incubated for 1 h at room temperature on an orbital shaker.
Standards (testosterone solution; Sigma-Aldrich, St. Louis,
MO) were assayed in duplicates in a range of 78.125 to
10,000 pg/ml−1 in assay buffer (NaH2PO4 0.65 M,
Na2HPO4 1.03 M, NaCl 0.15 M, pH 7.0). We washed plates
five times, then 100 μl of fresh substrate buffer (40
mMABTS[2,2′-azino-bis (3-ethylbenzothiazoline-6-
sulphonic acid] diammonium salt, 1.6 mM H2O2, 0.05 M
citric acid pH 4.0) was added to each well and incubated on
an orbital shaker for 45 min. Absorbance was read at
405 nm with a Multiskan GO microplate spectrophotometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA). Cross-
reactivity of the testosterone antibody with each steroid is
testosterone 100.0 %, 5α-dihydrotestosterone, 7.4 %; an-
drostenedione, 0.27 %; and androsterone, dehydroepian-
drosterone, cholesterol, 17-α estradiol, progesterone, and
pregnenolone<0.05 % (Muir et al. 2001). Sensitivity of
the testosterone polyclonal antibody is 0.1 pg/wells−1

(Munro and Lasley 1988). Sample testosterone concentra-
tions were calculated and expressed as a function of dry
fecal mass (picograms per milligram). The assay was repeat-
ed for any sample in which triplicates differed by 20 % or
greater.

Table 1 Descriptive statistics of dominance matrices of bighorn rams
2 years and older, from 2009 to 2011, Ram Mountain, Alberta, Canada

Year Number
ofmales

Number of
interactions

% of dyads
observed

h′ P DC

2009 16 76 63.33 0.45 0.002 0.88

2010 13 37 47.44 0.47 0.017 0.89

2011 16 120 65.80 0.6 <0.001 0.92

h′ Landau's corrected linearity index, DC directional consistency index
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Assay validations

To validate assays (Buchanan and Goldsmith 2004), pooled
pellets from five fecal samples were weighted and extracted
together to test for parallelism with the standard curve. We
also used this extract (diluted 1:25) as an inter-assay standard.
The intra-assay coefficient of variation (CV) was calculated
based on triplicates for each sample (N=217). To calculate
repeatability, we measured testosterone for four individuals
with nine independent replicates per individual. To estimate
the efficacy of our extraction method, we repeated four serial
extractions on the same samples for four individuals. The pool
was serially diluted 1:2, 1:4, 1:8, 1:16, 1:32, and 1:64 to
confirm parallelism with the standard curve. Mean intra- and
inter-assay CV were 10.18±1.55 and 7.68±5.95 %, respec-
tively. The efficiency of extraction was 77±12 % for the first
extraction. Repeatability was 94.51 % [confidence interval
(CI), 0.826, 0.995; nine replicates per individual].

Statistical analysis

We adjusted horn size and body mass for capture date to
account for growth during the summer. We first estimated
individual daily growth rates by fitting a linear mixed effects
model on repeated individual measurements taken through-
out the sampling seasons (Martin and Pelletier 2011).
Models included ram identity (intercept) and the square root
of date (slope) as random effects, and age and square root of
date as fixed effects to correct for the mean effects of age
and date. The square-root transformation of date linearizes
phenotypic changes over the summer (Festa-Bianchet et al.
1996). We included linear and quadratic terms of age to
account for the asymptotic pattern of growth with age.
Horn length, body mass, and testis diameters for all individ-
uals were adjusted to the beginning (June 5th) and the end of
the growing period (September 15th). We used these two
dates, referred to as spring and autumn, for consistency with
previous studies (Festa-Bianchet et al. 2000). The length of
horn annual increments was the difference between autumn
and spring horn lengths.

We tested the repeatability of our measurements for testis
size and testosterone levels for the same individual using the
package “ICC” (Wolak et al. 2012) with R version 2.14.1 (R
Development Core Team 2011). To evaluate factors affect-
ing individual testosterone levels, we fitted a model includ-
ing date, age, a quadratic term for age, testis size, year, and
the interactions between date and the two age terms, using
log-normal models. We used a log-normal linear model
because ram identity as random variable was not significant,
with a Gaussian family and a log link to maximize homo-
geneity of residuals. We included year as a categorical fixed
variable in all models because there were only four levels
(Bolker et al. 2009).

We also fitted linear models to determine the factors
affecting social rank, and growth in horn length and base
circumference. Ram identity as random variable for these
models was not significant according to a log-likelihood
ratio test (Pinheiro and Bates 2000). We modeled total horn
length with linear mixed models as ram identity was signif-
icant according to LRT. All models of morphological pa-
rameters included as explanatory variable age and age2,
mean testosterone level, year, and the interactions between
mean summer level of testosterone and the two age terms.
Models of social ranks included as explanatory variables
age and age2, mean testosterone level, year, and the interac-
tions between mean summer testosterone and the two age
terms. As ranks were standardized by the annual number of
males, we did not include year effects in these models. We
simplified each full model through backward stepwise dele-
tion based on the significance of the variables (Zuur et al.
2008). We accompanied each deletion step with a log-
likelihood ratio test to ensure that model fit was not reduced.
All estimates of continuous variables were calculated on
standardized variables, with zero means and unit standard
deviations. All analyses were performed using R version 2.
14.1 (R Development Core Team 2011). Linear mixed
models were fitted using the “nlme” package (Pinheiro et
al. 2012).

Results

Temporal variation in testosterone levels

Individual testosterone levels ranged from 6.63 to 229.
87 pg/mg. Average level decreased over the summer
(Table 2, Fig. 1) and was not associated with testis size or
age (Table 2). Interactions between date and either age or
age2 were not significant (Table 2).

Effect of testosterone on social rank

Social rank was influenced by the interaction between tes-
tosterone and age (Table 3, Fig. 2). Testosterone had a
positive association with rank for prime-aged rams, between
about 4 and 7 years of age, while it had a weaker and
possibly negative effect for both younger and older rams.
Horn length had a positive effect on social rank.

Effect of testosterone on morphology

Repeatability of testis size was 0.99 (CI, 0.985, 0.994).
After controlling for age, there was no effect of testosterone
on horn growth (Table 4). Total horn length in autumn was
affected by an interaction between testosterone and age:
testosterone had increasingly positive effects on length as

922 Behav Ecol Sociobiol (2013) 67:919–928



individuals aged (Table 4, Fig. 3). Body mass appeared
independent of testosterone levels. Because results for mass
were similar to those for horn size, they are reported in
(Table S1) the Electronic supplemental material.

Discussion

Our analyses suggest that testosterone may be related to a
male’s ability to compete for mates through behaviors that
determine social rank, rather than through development of
morphological traits. As expected, we also found that the

relationship between testosterone and social rank varied
with ram age. Testosterone had a positive correlation with
rank for rams aged 4 to 7 years, but not for those younger or
older. We could not detect any relationship between testos-
terone and horn growth, horn base circumference, or body
mass. Testosterone, however, had an age-dependent corre-
lation with horn length. By integrating hormonal, behavior-
al, and morphological measurements of marked known-age
individuals over 3 years, our research underlines the com-
plex roles of behavioral endocrinology in the development
of fitness-related traits in wild long-lived mammals.

The positive association between testosterone and social
rank for rams aged 4 to 7 years suggests that for prime-aged
adults testosterone may be correlated with aggressiveness,

Fig. 1 Decrease in testosterone
levels over spring–summer
(day 0 is May 25th) for bighorn
rams on Ram Mountain,
Alberta, Canada. The fitted line
controls for year effects
presented in Table 2

Table 2 Factors affecting individual testosterone levels from June 5th
to September 15th in bighorn sheep rams, Ram Mountain, Alberta,
Canada

Variable Estimate SE t P

Intercept 4.541 0.048 95.051 <0.001

Date −0.102 0.026 −3.973 <0.001

Years

2009 −0.112 0.066 −1.706 0.090

2010 −0.418 0.077 −5.455 <0.001

2011 0.092 0.064 1.429 0.155

Age (5) −0.041 0.026 −1.592 0.113

Age2 (4) 0.047 0.115 0.410 0.682

Testis size (3) 0.138 0.071 1.926 0.056

Date×age (2) −0.008 0.025 −0.331 0.741

Date×age2 (1) 0.095 0.113 0.846 0.399

Estimates are from loglinear models including 169 observations of 23
rams in 2008–2011. Year 2008 was considered as the reference year.
Ram identity as a random effect was excluded after testing its signif-
icance by log-likelihood ratio test (log-likelihood ratio=0.008, P=
0.928). Variables in bold were retained in the final model. The order
of deletion by backward simplification is in parenthesis. The final
model explained 33.62 % of the deviance

Table 3 Effects of age, age2, fecal testosterone levels, their interac-
tions, and horn length in autumn on social rank from 2009 to 2011 in
bighorn rams, Ram Mountain, Alberta, Canada

Fixed effects Estimate SE t P

Intercept 0.463 0.038 12.025 <0.001

Mean (T) −0.036 0.034 −1.050 0.302

Age 0.273 0.226 1.211 0.235

Age2 −0.175 0.167 −1.043 0.305

Horn length 0.214 0.080 2.667 0.012

Years

2010 −0.158 0.060 −2.636 0.013

2011 −0.106 0.063 −1.690 0.101

Mean (T)×age 0.575 0.201 2.854 0.008

Mean (T)×age2 −0.528 0.200 −2.636 0.013

Estimates are from a linear model including 39 observations of 20 rams
in 2009–2011. Ram identity as a random effect was excluded after
testing its significance by log-likelihood ratio tests (log-likelihood ratio=
0.441, P=0.506). Adjusted R2 =0.776. Mean [T] is the mean fecal tes-
tosterone level. Year 2009 was considered as reference
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endurance, or other factors that improve ability to attain high
rank. This is a key result because most of these rams are likely
to use alternative reproductive tactics, which can account for as
much as 40 % of paternities (Coltman et al. 2002). The age-
dependent relationship between testosterone and social rank
was 2.6 times stronger than that between testosterone and horn
length. This result suggests that testosterone may mainly in-
fluence mating competitiveness through its relationship with
social rank. That contention is supported by the correlation

between aggression rate and testosterone levels observed in
rams from another population (Pelletier et al. 2003). The strong
relationship between age, mass, and social rank found among
young rams began to break down at about 6 years of age
(Pelletier and Festa-Bianchet 2006), when age was no longer
the predominant determinant of body mass. Consequently,
some prime-aged individuals were able to outcompete some
older conspecifics and increase their rank. The declining effect
of testosterone on social ranks we observed beginning at about

Testosterone (pg/m
g)

Fig. 2 Effects of age,
testosterone, and their
interaction on social rank of
bighorn rams, 2009–2011,
Ram Mountain, Alberta,
Canada. The grey surface
is the prediction of the model
presented in Table 3. Points are
raw data and are connected to
their respective prediction on
the surface

Testo
ste

rone (pg/mg)

Fig. 3 Effects of age,
testosterone, and their
interaction on horn length
adjusted to September 15,
2008–2011, in bighorn rams,
Ram Mountain, Alberta,
Canada. The grey surface is the
prediction of the final model
presented in Table 4c. Points
are raw data and are connected
to their respective prediction on
the surface

924 Behav Ecol Sociobiol (2013) 67:919–928



age 7may result from an increasing importance of morphology
relative to testosterone in the acquisition of rank as rams age.
Given the limited sample size of older individuals, however,

the apparently negative relationship between rank and testos-
terone for older rams must be interpreted cautiously.

Testosterone levels may affect social ranks, or testosterone
may vary in response to social challenges as proposed by the
“challenge hypothesis” (Wingfield et al. 1990). Given the
dramatic effects of hormone levels on life histories, we did
not manipulate individual hormone levels in our wild study
population. Although path analysis (Shipley 2009) may cir-
cumvent the difficulty of establishing the direction of causal-
ity, our sample sizes precluded us from using it. The
combination of our results with those of Pelletier and Festa-
Bianchet (2006) can help address the unclear direction of
causality between behavior and testosterone. Testosterone
levels decreased from 110 to 75 pg/mg of feces following
the June congregation of rams (Festa-Bianchet 1986) until late
September, and Pelletier et al. (2003) showed that testosterone
levels decreased from 60 to 15 pg/mg of feces between mid-
September and mid-December. This pattern follows a general
decline of testosterone levels with time, and suggests that rams
exhibit the highest testosterone levels in spring, a critical
period in the establishment of male social rank (Geist 1971).

Our study contrasts with earlier reports of testosterone
effects on social rank (Schwarzenberger 2007), mostly from
experimental studies that did not account for the possible
effects of age (but see Pelletier et al. 2003) and morphology.
In many sexually dimorphic mammals, age has a strong effect
on the development of male secondary sexual traits (Pelletier
and Festa-Bianchet 2006; Bergeron et al. 2010) that may be
affected by testosterone in an age-dependent manner.
Consequently, reported effects of testosterone on social rank
may have been confounded by age and by the size of sexually
selected traits. For example, Pelletier et al. (2003) did not find
a relationship between testosterone and social rank of bighorn
rams after accounting for age, likely because testosterone and
age were correlated. In our study population, testosterone was
not correlated with age or horn length; therefore, we were able
to assess their relationships with social rank.

Based on the extensive literature on testosterone depen-
dence of secondary sexual traits in vertebrates (e.g.,
Garamszegi et al. 2005; McGlothlin et al. 2008; Roberts et
al. 2009; Gaspar-López et al. 2010), we expected positive
correlations between testosterone and both horn growth and
mass gain. In line with this prediction, testosterone had a
weak but increasingly positive effect on total horn length as
individuals aged. We did not, however, detect any effect of
testosterone on annual horn growth. These conflicting re-
sults suggest that the age-dependent effects of testosterone
on total horn length likely emerged from the positive asso-
ciation between social rank on the one hand, and testoster-
one levels and horn length on the other hand. This
interpretation is supported by the very weak age-dependent
effects size of testosterone in a model where fixed effects
explained less than 6 % of the deviance (Table 4) and the

Table 4 Effects of year, fecal testosterone level, age, and their inter-
action on the growth of horn length and horn base from spring to
autumn, and on annulus length and total horn length in bighorn rams,
Ram Mountain, Alberta, Canada

Variable Estimate SE t P

(a) Horn length growth. Adjusted R2=0.618 (LRT=2, P=0.157)

Intercept 7.515 0.152 49.521 <0.001

Age −1.492 0.153 −9.747 <0.001

Years

2009 (5) 0.163 0.431 0.379 0.706

2010 (5) 0.115 0.418 0.275 0.785

2011 (5) −0.823 0.420 −1.961 0.055

Mean (T) (4) −0.032 0.181 −0.177 0.860

Age2 (3) −0.065 0.713 −0.091 0.928

Mean (T)×age (2) 0.120 0.198 0.609 0.545

Mean (T)×age2 (1) 1.123 1.012 1.109 0.273

(b) Horn base growth. Adjusted R2=0.591 (LRT=0.001, P=0.999)

Intercept 3.965 0.053 75.092 <0.001

Age −1.473 0.245 −6.013 <0.001

Age2 1.062 0.245 4.336 <0.001

Years

2009 (4) 0.098 0.155 0.633 0.529

2010 (4) −0.088 0.149 −0.588 0.559

2011 (4) −0.211 0.154 −1.371 0.176

Mean (T) (3) −0.020 0.065 −0.313 0.755

Mean (T)×age (2) 0.022 0.070 0.313 0.755

Mean (T)×age2 (1) 0.291 0.361 0.804 0.425

(c) Horn length (LRT=33.235, P<0.001)

Intercept 60.482 1.024 59.059 <0.001

Mean (T) −0.077 0.331 −0.234 0.817

Age 46.137 1.777 25.968 <0.001

Age2 −30.527 1.884 −16.2 <0.001

Mean (T)×age 1.315 0.413 3.18 0.003

Years

2009 (2) 0.061 1.045 0.058 0.954

2010 (2) −0.058 1.294 −0.045 0.965

2011 (2) −0.847 1.539 −0.551 0.586

Mean (T)×age2 (1) −3.197 2.333 −1.371 0.181

The significance of ram identity as a random effect was tested by log-
likelihood ratio tests (LRT). Models (a) and (b) are linear, while (c) is a
linear mixed model. Horn length was adjusted to September 15th. In
model (c; Fig. 3), the proportion of deviance explained by random
effects is 0.817 and that explained by fixed effects is 0.057. The order
of deletion by backward simplification is in parenthesis. Variables in
bold constitute the final model. The models included 59 observations
of 23 rams in 2008–2011. Mean (T) is the mean faecal testosterone
level. 2008 was considered as the reference year
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independence of testosterone and body mass, while mass is
strongly correlated with total horn length. Malo et al. (2009)
also reported testosterone independence of antler length and
number of points in red deer (Cervus elaphus), although the
diameter of the antler burr decreased as testosterone level
increased. In bovids, keratin is the main component of horns
and is produced by keratinocytes controlled by the epider-
mal growth factor (Tomlinson et al. 2004). This growth
factor is itself under the control of androgens, the lactogenic
hormone prolactin, and the stress hormones glucocorticoids
(Hendry et al. 1999). Keratinization thus integrates short-
and long-term environmental stimuli, and testosterone may
have a limited influence on the amount of keratin proteins
synthetized.

Testosterone levels fluctuate both seasonally and over the
lifetime. A typical pattern involves seasonal covariation of
sexual activity and testosterone (but see Lynch et al. 2002):
testosterone rises before the breeding season, peaks during
it, and then returns to its baseline level. This pattern arises
from environmental cues including changes in photoperiod
(Wingfield and Kenagy 1991; Bronson 2009), as shown for
instance in lemurs (Microcebus murinus, Perret 1992), ma-
caques (Macaca mulatta, Herndon et al. 1996), and feral
sheep (Ovis aries, Lincoln and Ebling 1985). In several
sheep breeds, Lincoln et al. (1990) found that testosterone
levels increased with decreasing day length. In contrast, we
found that testosterone in wild bighorn sheep decreased with
decreasing day length after the summer solstice. Similar
results were obtained for wild Alpine ibex (Capra ibex),
where fecal testosterone decreased from 6.60±3.55 pg/mg in
late June to 3.18±1.18 pg/mg in late August (Decristophoris
et al. 2007). The seasonal decrease common to bighorn sheep
and ibexmay also explain the lack of correlation between rank
and testosterone among wild male tahr sampled in late autumn
(Lovari et al. 2009). The reason for the contrasting seasonal
pattern between domestic and wild sheep remains to be
investigated.

We explored the importance of age on testosterone effects
on male social rank and on the development of sexually
selected traits in a polygynous and highly sexually dimor-
phic species in natural conditions. We provided evidence
that testosterone levels are related to mating competitiveness
through sexual behaviors in an age-dependent manner, but
not to growth of sexually selected traits. Our results
therefore support the hypothesis that differences in tes-
tosterone among individuals could be a proximate cause
of variance in reproductive success (Hillgarth et al. 1997),
which is a necessary condition for selection (Arnold and
Wade 1984). Our study emphasizes the need of long-
term monitoring of wild populations and the importance
of integrating endocrinology within a framework of evolu-
tionary ecology to refine our understanding of sexual
selection.
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Table S1. Effects of testosterone levels, age and year on body mass of bighorn sheep 1 

rams, adjusted to spring (June 5
th

) and autumn (September 15
th

), Ram Mountain, Alberta, 2 

Canada. Estimates are from linear mixed models with ram identity as random effects. The 3 

order of deletion by backward simplification is indicated in parenthesis. Variables in bold 4 

were retained in the final model. The models included 59 observations of 23 rams during 5 

2008-2011. Mean [T] is the mean faecal testosterone metabolites level. Year 2008 was 6 

considered as reference. 7 

 8 

  Variable  Estimate SE t P 

a) Spring body mass. Proportion of deviance explained by random effects is 0.845 

(LRT=37.050, P<0.0001). Proportion of deviance explained by fixed effects is 0.148 

 Intercept  67.821 1.485 45.680 <0.001 

 Age  41.851 2.300 18.192 <0.001 

 Age²  -28.285 2.467 -11.463 <0.001 

 Years : 2009 (4) 1.415 1.366 1.036 0.308 

 2010 (4) 1.779 1.662 1.07 0.293 

 2011 (4) 1.072 2.117 0.506 0.616 

 Mean [T] (3) 0.105 0.542 0.194 0.848 

 Mean [T] × Age (2) 1.013 0.572 1.771 0.087 

 Mean [T] × Age² (1) -1.239 3.109 -0.399 0.693 

          

b) Autumn body mass. Proportion of deviance explained by random effects is 0.884 

(LRT=44.428, P<0.001). Proportion of deviance explained by fixed effects is 0.205 



2 

 

 Intercept  90.540 1.838 49.248 <0.001 

 Age  41.892 2.455 17.061 <0.001 

 Age²  -27.482 2.651 -10.366 <0.001 

 Mean [T] (4) -0.083 0.449 -0.186 0.854 

 Years : 2009 (3) 1.314 1.528 0.860 0.397 

 2010 (3) 2.447 2.021 1.210 0.236 

 2011 (3) 1.256 2.555 0.492 0.627 

 Mean [T] × Age (2) 0.798 0.616 1.294 0.206 

 Mean [T] × Age² (1) -1.267 3.359 -0.377 0.709 

          

c) Mass gain. Proportion of deviance explained by random effects is 0.537 

(LRT=13.081, P<0.001). No deviance explained by fixed effects. 

 Intercept  22.715 0.429 52.928 0.000 

 Age (6) 0.548 0.322 1.700 0.098 

 Mean [T] (5) 0.113 0.213 0.531 0.599 

 Age² (4) -0.282 1.199 -0.235 0.815 

 Years : 2009 (3) 0.093 0.675 0.138 0.891 

 2010 (3) 0.643 0.755 0.851 0.401 

 2011 (3) 0.086 0.808 0.107 0.916 

 Mean [T] × Age (2) -0.200 0.304 -0.658 0.516 

 Mean [T] × Age² (1) 0.497 1.628 0.305 0.763 

 1 

 2 
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