polyandrous dunnocks Prunella modularis related to paternity by DNA fingerprinting, Nature 338, 249-251
44 Møller, A.P. and Birkhead, T.R. (1993) Cuckoldry and sociality: a comparative study, Am. Nat. 142, 118-140
45 Lifjeld, J.T., Dunn, P.O. and Westneat, D.F. (1994) Sexual selection by sperm competition in birds: male-male competition or female choice? J. Avian Biol. 25, 244-250
46 Clutton-Brock, T.H. and Parker, G.A. (1995) Punishment in animal societies, Nature 373, 209-216
47 Møller, A.P. (1992) Frequency of female copulations with multiple males and sexual selection, Am. Nat. 139, 1089-1101

48 Alatalo, R.V. et al. (1996) Paternity, copulation disturbance and female choice in lekking black grouse, Anim. Behav. 52, 861-873
49 Lank, D.B. et al. (1995) Genetic polymorphism for alternative mating behaviour in lekking male ruff Philomachus pugnax, Nature 378, 59-62

## Reference added in proof

50 Westneat, D.F. and Sherman, P.W. (1997) Density and extra-pair fertilizations in birds: a comparative analysis, Behav. Ecol. Sociobiol. 41, 205-215

# Population dynamics of large herbivores: variable recruitment with constant adult survival 

Jean-Michel Gaillard, Marco Festa-Bianchet and Nigel Gilles Yoccoz

The factors that explain changes in population size are a central theme in ecology, and long-term studies of population dynamics are of great interest for life history theory, population ecology, wildlife management and conservation biology ${ }^{1,2}$. Studies that can identify which vital rates are more variable (variability patterns) and which ones are more likely to influence overall changes in population size (elasticity patterns) are particularly useful ${ }^{2}$. Historically, large herbivores were sometimes considered unsuitable for the study of population ecology because their long generation time meant that interesting results could not be expected for several years. However, large herbivorous mammals are particularly suited to demographic studies because age classes are readily identifiable. In addition, many species are economically important or are useful indicator species for conservation. Recently, several researchers have published long-term studies of ungulates, mostly based on monitoring of marked individuals and often taking advantage of recent methodological developments of Capture-Mark-Recapture (CMR) modeling that account for differences in the probability of recapturing (or resighting) marked individuals, so that biological hypotheses can be tested reliably ${ }^{3}$.

Recent studies suggest that the population dynamics of large herbivores can be strongly affected by a combination of stochastic environmental variation and density dependence ${ }^{4}$. Food resources, habitat quality, weather, disease and parasites, interspecific competition, predation, human activities and population density can account for the demographic variation observed among years within a population or among populations within a species. While several studies have

> Recent long-term studies of population ecology of large herbivorous mammals suggest that survival of prime-aged females varies little from year to year and across populations. Juvenile survival, on the other hand, varies considerably from year to year. The pattern of high and stable adult survival and variable juvenile survival is observed in contrasting environments, independently of the main proximal sources of mortality and regardless of whether mortality is stochastic or density-dependent. High yearly variability in juvenile survival may play a predominant role in population dynamics.

Jean-Michel Gaillard, Marco Festa-Bianchet and Nigel Gilles Yoccoz are at the UMR CNRS 5558, Laboratoire de Biométrie, Génétique et Biologie des Populations, Université Lyon 1, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France (gaillard@biomserv.univ-lyon1.fr).

## attempted to identify the most

 important factor driving changes in population size (e.g. Ref. 2), less effort has been devoted to assessing the roles of different vital rates (such as age-specific survival and reproduction) in affecting population dynamics. Because large herbivores have strongly agestructured populations and markedly iteroparous life histories ${ }^{5}$, different vital rates may respond differently to various limiting factors (Box 1). Twenty years ago, Eberhardt ${ }^{6}$ proposed that the negative effects of increasing density on population growth would occur in a specific order. Among vital rates, juvenile survival (usually defined as survival over the first year of life) should change first, then the age at first reproduction, followed by the reproductive rates of prime-age adults and lastly by adult survival (Box 1).Here, we review recent research trends on temporal variation in survival of juveniles and of prime-aged females in response to environmental stochasticity and densitydependence in large herbivores. We do not discuss demographic variation because we excluded accounts of small populations where demographic stochasticity could account for an important part of stochastic variation in vital rates.

## Assessing temporal variation in vital rates in wild populations: methods and data

Two fundamental problems in population dynamics have challenged biologists and statisticians ${ }^{2}$ : (1) how to measure the contribution of different vital rates to overall variability in population growth rate, and (2) how to quantify the roles of density-dependent and density-independent factors. Reliable estimates of each vital rate and a measure of the precision of these estimates (such as their variance) are key
to solving these problems. Until very recently, reliable estimates of vital rates (especially survival) for wild populations of large herbivores were uncommon, because they require long-term monitoring of marked individuals. Most published survival estimates were based on transversal life tables (for instance 14 of 17 ungulate populations in Purvis and Harvey's analysis ${ }^{7}$ ). The life-table technique assumes a stationary age distribution and equal probability of sampling for all individuals: if these assumptions are violated, survival estimates are unreliable ${ }^{1}$. These strict assumptions are unlikely to be met in any population of wild mammals ${ }^{8,9}$. Even if the assumptions were met, life-table methods do not generally provide any measure of variability in survival rates.

Fortunately, recent years have seen a rapid increase in use of CMR and radiotelemetry methods for estimating survival rates and their variability. The modeling of survival has now a firm statistical basis and allows for a flexible analysis of the roles of environmental factors and of density ${ }^{3}$. The total variability of estimates of vital rates has different components, including sampling variability. A proper measure of the precision of survival estimates is therefore required to avoid confounding sampling variability and 'biological variability' due to intrinsic and extrinsic factors (Box 2). The same problem applies to estimates of population variability or trends ${ }^{10}$. Methods based on estimation of variance components should therefore be used to separate sampling variability from 'biological variability'.

## Density dependence and vital rates in large herbivores

Fowler's review ${ }^{11}$ supported Eberhardt's idea that vital rates have different sensitivities to changes in population density. In 21 species of large herbivores for which density dependence was reported, juvenile survival was involved in 15 , age at first breeding in 12 and adult survival in only nine. Density dependence of adult reproductive traits was reported for 17 of 21 species, but measures of reproduction, such as the number of young per adult female, usually included early juvenile survival. Fowler ${ }^{11}$ pointed out that differences in the response of vital rates to changes in population density were inconclusive because adult survival is far more difficult to assess than reproductive traits. Early recruitment can be measured by female:young ratios, but adult survival is very difficult to quantify without long-term monitoring of many marked individuals.

Recent studies based mainly on monitoring individually recognized animals also support Eberhardt's suggestion. Of nine species in which adult survival and other vital rates were studied in relation to variation in population density (Table 1), all exhibited density dependence in recruitment (juvenile survival, proportion of females breeding, or a combination of both traits), yearling survival was density-dependent in four, but only two island populations (Soay sheep and red deer) exhibited density dependence in adult survival. Even for these two species, survival of adult females varies much less than juvenile survival ${ }^{12,13}$. Therefore, juvenile survival is much more sensitive to density dependence than adult survival, which appears to be buffered against density effects.

## Environmental variation and vital rates in large herbivores

Tables 2 and 3 summarize recent long-term studies on among-year variation in vital rates of large herbivores by focusing on juvenile survival (as a measure of recruitment) and survival of adult females. Whenever possible, we con-

## Box 1. The life cycle of female large herbivores: demographic analysis of a model population

Consider a population of large herbivores just before parturition. Suppose that each year $75 \%$ of 2 -year-old females produce young [yearly proportion of 2 -year-old females giving birth $(\% \mathrm{~B} 2)=0.75$ ] and all females 3 -year-old and older produce young [yearly proportion of 3 -year-old and older females giving birth (\%B3+)=1]. All reproducing females give birth to a single offspring (litter size, LS = 1). This leads to a production of 0.5 females per breeding female assuming an even sex ratio at birth. Female offspring have a mean first-year survival of 0.50 (juvenile survival, $\mathrm{SJ}=0.50$ ) and a second-year survival of 0.75 (yearling survival, $\mathrm{SY}=0.75$ ). From 2 to 7 years, the annual survival of females is 0.90 (prime-age survival, $\mathrm{SA}=0.90$ ). Survival probability decreases to 0.70 for females older than 7 years (senescent survival, SS=0.70).

A Leslie-Usher matrix model ${ }^{2}$ for this population is therefore:

| 0 | 0.1875 | 0.1875 | 0.1875 | 0.1875 | 0.1875 | 0.1875 | 0.1875 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0.90 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0.90 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0.90 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0.90 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0.90 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0.90 | 0.70 |

From this matrix, we obtain a population multiplication rate $(\lambda)$ of 1.026 . The elasticities of different vital rates (i.e. the change of $\lambda$ due to a given proportional change in a vital rate, $a_{i j}$ ) are defined by:

$$
e_{i j}=\frac{\partial \operatorname{Ln}(\lambda)}{\partial \operatorname{Ln}\left(a_{i j}\right)}=\frac{a_{i j}}{\lambda} \frac{\partial \lambda}{\partial a_{i j}}
$$

For the above Leslie-Usher matrix, we obtain ${ }^{2}$ :
$e$ (recruitment) $=0.174$
where parameters defining recruitment [SJ, LS, and (\%B2 + \%B3+)] all have the same elasticity because changing any of these parameters by a certain percentage will have exactly the same impact on $\lambda$ (multiplicative terms in the Leslie matrix). Elasticities of \%B2 and \%B3+ were respectively 0.023 and 0.151 .

$$
\begin{aligned}
& e(S Y)=0.174 \\
& e(S A)=0.513
\end{aligned}
$$

where elasticity of prime-age survival is calculated as the sum of the elasticities of 5 year age classes (between 2 and 7 years of age).

$$
e(\mathrm{SS})=0.140
$$

Variation in adult survival has the greatest effect on $\lambda$ : a change in adult survival should have about three times more impact on $\lambda$ than the equivalent change in recruitment.
sidered only prime-aged adults (typically those aged 2-7 years ${ }^{14,15}$, but including some older age classes in larger species like red deer ${ }^{16}$ ), because the survival of older individuals appears to be lower ${ }^{14,15}$ and therefore estimates of 'adult' survival that include all age classes would be affected by population age structure. The survival of prime-aged females of 24 populations of 16 species of large herbivores monitored for a minimum of 5 years shows little among-year variation (coefficient of variation (CV) varying from 2 to $15 \%$, Table 2). In contrast, juvenile survival shows marked temporal variation in 19 populations of 14 species (CV varying from 12 to $88 \%$, Table 3). The differential response of adult and juvenile survival to environmental variation is clearly evident from a comparison of the same populations (numbered studies in Tables 2 and 3). In all 18 populations, yearly juvenile survival varied more than adult survival.

The high yearly variation in juvenile survival probably has multiple causes. Predation ${ }^{17-20}$ drought in spring and summer ${ }^{21,22}$ rainfall ${ }^{23,24}$, harsh winters ${ }^{17,19,21,23}$, low birth weight and early growth rates ${ }^{12,19,23}$, late parturition ${ }^{19,23}$, poor calving areas ${ }^{25}$, lack of suitable bedding sites ${ }^{19}$, genetic factors ${ }^{23}$ and altered immunocompetence of neonates ${ }^{26}$ have been reported to decrease juvenile survival in ungulates. Although almost as many causes of adult mortality have been reported,

Table 1. Evidence for/against density-dependent responses in vital rates of eight species of large herbivores

| Species | Refs | Evidence for density-dependence in: | No evidence for density-dependence in: | Range of density (number/km²) |
| :---: | :---: | :---: | :---: | :---: |
| White-tailed deer (Odocoileus virginianus) | 37 | Juvenile survival in summer, reproductive success of 2 and 3 years old females and recruitment | Adult survival | 14-26 |
| Greater Kudu (Tragelaphus strepsiceros) | 24 | Juvenile survival in both populations studied, yearling survival in one population | Prime-age and senescent survival in both populations and yearling survival in one population | $\begin{aligned} & 1.5-3 \\ & 2.5-4 \end{aligned}$ |
| Roe deer (Capreolus capreolus) | 14,22 | Age at first breeding and juvenile survival in summer | Yearling, prime-age and senescent survival and fecundity | 6-21 |
| Red deer (Cervus elaphus scoticus) | 13 | Age at first breeding, fecundity of milk yield hinds, juvenile survival in winter, male yearling survival and adult survival | Summer part of juvenile survival, yearling survival of females and breeding proportion of prime age females | 18-25 |
| Wapiti (Cervus elaphus canadensis) | 38,19 | Juvenile survival | Adult survival | 3-13.5 |
| Bighorn sheep (Ovis canadensis) | 39,15 | Juvenile survival, age at first breeding and female yearling survival | Yearling male survival, prime-age and senescent survival | 0.8-2.6a |
| Reindeer (Rangifer tarandus) | 40 | Age at first breeding and recruitment | Breeding proportion of adult females and adult survival | 0.5-5.5 ${ }^{\text {b }}$ |
| Donkey (Equus asinus) | 41 | Age at first breeding and juvenile survival | Breeding proportion of adult females and adult survival | 1.5 and 3 c |
| Soay sheep (Ovis aries) | 12 | Juvenile, yearling and adult survival | Fecundity | 96-222 |

aFemale density only.
${ }^{\text {b }}$ Density variation among contrasted populations.
${ }^{\text {c D Density }}$ variation between two experimental sites.
including factors such as epizootics that caused significant yearly differences in adult survival ${ }^{15,27}$, the available evidence indicates that, within a population, adult survival is always less variable than juvenile survival. This pattern is apparently independent of the main proximal causes of mortality and occurs in different taxa, in different continents and in widely different environments.

Juvenile survival, which determines recruitment, is highly sensitive to limiting factors, regardless of whether its variation
is caused by changes in population density or by stochastic environmental factors. Adult female survival is buffered against most limiting factors (Fig. 1). Only long-term studies of a large sample of marked individuals can detect variation in survival of large herbivores (Box 2). A large sample is required to reduce sampling variability and many years of monitoring are required to measure variability in yearly survival, over a range of densities and environmental variation. In addition, it appears that estimates of adult survival of large herbivores are subject to greater sampling error than estimates of juvenile survival (Box 2). Therefore, analyses that partition biological and sampling variability will likely reinforce our conclusion that adult survival is much less variable than juvenile survival.

## Constant adult survival or variable recruitment: which is more important for population dynamics of large herbivores?

Many demographic analyses of large vertebrates have shown that adult survival has the highest elasticity, while juvenile survival and reproductive traits have the lowest elasticity ${ }^{28,29}$ (Box 1). In general, elasticity of adult survival increases with generation length ${ }^{30}$, which in turn increases with body

Table 2. Variation in prime-age adult survival of females in response to environmental stochasticity ${ }^{\text {a }}$ in populations of large herbivores (with at least 5 years' monitoring)

| Species | Refs | Mean survival | Min | Max | CV | $\mathrm{N}^{\text {b }}$ | Methods ${ }^{\text {c }}$ | Analysis ${ }^{\text {d }}$ | Number of years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mule deer (Odocoileus hemionus) | 43 | (1) 0.856 | 0.692 | 1 | 0.101 | 741 | CMR | DA | 13 |
|  |  | (2) 0.807 | 0.743 | 0.899 | 0.070 | 634 | CMR | DA | 9 |
|  | 17 | (3) 0.875 | 0.760 | 1 | 0.090 | 185 | RT | CR | 6 |
| Caribou/Reindeer (Rangifer tarandus) | 25 | 0.842 | 0.750 | 0.930 | 0.088 | 538 | RT | CR | 10 |
|  | 44 | $0.878{ }^{\text {f }}$ | 0.810 | 0.950 | 0.058 | 532 | RT | CR | 9 |
|  | 41 | (4) 0.940 g | 0.920 | 0.963 | 0.017 |  | CC | DA | 68 |
| Greater Kudu | 24 | (5) 0.933 | 0.810 | 1 | 0.061 | 7-57 ${ }^{\text {h }}$ | CMR | DA | 11 |
| (Tragelaphus strepsiceros) |  | (6) 0.889 | 0.829 | 0.954 | 0.043 | 27-82 ${ }^{\text {h }}$ | CMR | DA | 11 |
| Bighorn sheep (Ovis canadensis) | 15 | (7) 0.956 | 0.871 | 1 | 0.033 | 872 | CMR | CR | 21 |
|  | (updated) | (8) 0.935 | 0.750 | 1 | 0.068 | 377 | CMR | CR | 12 |
| Roe deer (Capreolus capreolus) | 14 | (9) 0.947 | 0.776 | 1 | 0.079 | 287 | CMR | CR | 10 |
|  | (updated) | (10) 0.942 | 0.797 | 1 | 0.077 | 302 | CMR | CR | 10 |
| Soay sheep (Ovis aries) | 12 | (11) $0.871^{1}$ | 0.696 | 0.980 | 0.151 | 733 | CMR | DA | 6 |
| Moose (Alces alces) | 35 | (12) 0.949 | 0.907 | 1 | 0.033 | 524 | RT | CR | 10 |
| Red deer (Cervus elaphus scoticus) | 16 | (13) 0.955 |  |  | 0.077 |  | CMR | DA | 20 |
| Mouflon (Ovis gmelini) | 27 (updated) | $0.841{ }^{\text {j }}$ | 0.658 | 1 | 0.130 | 130 | CMR | CR | 7 |
| Chamois (Rupicapra rupicapra) | 44 (updated) | 0.960 |  |  |  |  | CMR | CR | 6 |
| Ibex (Capra ibex) | 45 (updated) | 0.965 | 0.709 | 1 | 0.086 |  | CMR | CR | 13 |
| Dall sheep (Ovis dalli) | 46 | (14) 0.880 | 0.710 | 1 | 0.108 |  | CC | DA | 10 |
| Wapiti (Cervus elaphus canadensis) | 38 | (15) 0.920 |  |  |  |  | CC | DA | 15 |
|  | 47 | 0.892 | 0.778 | 1 | 0.117 | 46 | RT | CR | 5 |
| Saïga (Saiga tatarica) | 21 | (16) $0.787^{\mathrm{k}}$ | 0.680 | 0.810 |  |  |  |  |  |
| Pronghorn (Antilocapra americana) | $\begin{gathered} \text { J. Byers } \\ \text { (pers. commun.) } \end{gathered}$ | (17) 0.978 | 0.850 | 1 | 0.041 |  | CMR | DA | 13 |
| Mountain goat (Oreamnos americanus) | Unpubl. data | (18) 0.916 | 0.800 | 1 | 0.079 | 160 | CMR | DA | 7 |

aEnvironmental stochasticity includes here all sources of variation in the underlying vital rate. In particular, no effect was made to partition density-dependent from other variation. Then, our CVs include sampling variation as well as biological variation.
${ }^{\text {b }}$ Sample size: number of 'animal-years' used for estimating survival probabilities.
${ }^{\text {c CMR }}$ : monitoring of individually marked animals (using collars, ear tags or natural marks) by resighting or recaptures; RT: monitoring of individually marked animals by radiotelemetry; CC: monitoring using composition counts.
${ }^{\mathrm{d}}$ CR: estimates based on capture-recapture modeling (see Ref. 3 for methods) accounting for capture probability less than 1; DA: direct assessment of survival from the proportion of individuals at risk known to have survived (assumes capture probability to be 1).
eNumbers in parentheses indicate populations for which juvenile survival was also available (see Table 3).
${ }^{f}$ Winter survival (November to May) only.
gVariation among contrasted populations.
${ }^{\mathrm{h}}$ Assumed to represent the largest and smallest sample size for a given year.
iWinter mortality only.
jPrime-age females defined from 3 to 5 years of age.
${ }^{k}$ Methods and $N$ not detailed in the original paper. Mean survival probability was obtained using the frequency of good and bad summer/winter conditions given in the paper.
size. These modeling results, however, do not rule out the possibility that all vital rates account for similar proportions of variance in population growth rate and therefore play similar roles in ungulate population dynamics. Some studies suggest that recruitment could be a stronger determinant of changes in population size than adult survival. Thus, juvenile survival was claimed to be the most important factor influencing population responses of peccary to fluctuating food availability ${ }^{31}$.

Hatter and Janz ${ }^{32}$ monitored a population of mule deer before, during and after a decline, and concluded that the highly variable juvenile survival (from 0.07 to 0.41 ) was more important than the constant adult survival (from 0.74 to 0.76 ) in explaining changes in population size. Gasaway et al. ${ }^{33}$, on the other hand, suggested that high mortality among adults was the primary demographic process limiting ungulate populations in Etosha. Therefore, it appears that the roles of adult survival and recruitment on population dynamics of large
herbivores cannot be assessed without further demographic analyses. Escos et al. ${ }^{28}$ and Walsh et al. ${ }^{29}$ underlined the difficulties of teasing apart the contributions of different vital rates to yearly changes in population size. Elasticity analyses alone cannot measure these contributions. To the theoretical estimates of what might happen (measured by elasticity) we must join empirical estimates of what happens (measured by long-term variability). This review has shown that adult survival is much less variable than juvenile survival. The next logical step will be to combine measurements of elasticity and variability to identify which vital rates are more important in causing changes in natural populations.

## Prospects

In large herbivores, recruitment is the main target of limiting factors, both density-dependent and densityindependent. Adult female survival appears buffered against temporal variation regardless of the causes of mortality, with

## Box 2. Assessing components of variability in stochastic environments

The variability of estimates of vital rates and population size is composed of sampling variability and biological ('true') variability ${ }^{10}$. The latter can be further partitioned in different components, such as intrinsic and extrinsic factors. To distinguish between sampling and biological variability we need a reliable measure of the sampling precision of estimates. For example, assuming a constant survival rate equal to 0.90 and estimating it by releasing each year 100 marked individuals results in a sampling standard error equal to $\sqrt{ }\left\{\left[p^{*}(1-p)\right] / 100\right\}=0.03$, and therefore observing estimates varying by $\pm 5 \%$ may be due entirely to sampling variation. The variance $\sigma_{\hat{a}}^{2}$, of the estimator $\hat{a}$ of a vital rate, $a$, is the sum of the biological variance, $\sigma_{a}^{2}$, and the sampling variance, $\operatorname{var}(\hat{a} \mid a)$. Methods based on estimation of variance components exist to separate sampling variability from biological variability 10,50 .

The bias in the estimate of biological variance when ignoring sampling variance, as well as the precision of the estimate, depend on the size of both variance components, which are different for juvenile and adult survival (see Table below).

As a typical example of adult survival, we assume true survival rates equal to $0.85,0.86, \ldots, 0.95$, for an average survival of 0.90 and $\sigma_{a}$ equal to 0.030 . For juvenile survival, we assume that true survival rates are equal to $0.25,0.30, \ldots$, 0.75 , for an average survival of 0.50 and $\sigma_{a}$ equal to 0.158 .

|  | Adult Survival |  |  | Juvenile Survival |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ | 50 | 100 | 200 | 50 | 100 | 200 |
| $\sigma_{\hat{a}}$ | 0.051 | 0.042 | 0.036 | 0.166 | 0.162 | 0.160 |
| Relative Bias | 70 | 40 | 20 | 5 | 2 | 1 |
| SE $\left(\hat{\sigma}_{a}\right)$ | 0.015 | 0.010 | 0.006 | 0.022 | 0.015 | 0.010 |

The sampling precision increases with the number of animals released, $N$, and when survival rate is close to 1 (or 0 ). The relative bias when ignoring sampling precision, $\left(\sigma_{\hat{a}}-\sigma_{a}\right) / \sigma_{a}$ is then expected to be larger for adult survival than for juvenile survival (for a given $N$ ), but the precision of the estimate, $\hat{\sigma}_{a}$, is higher.
the exception of disease. While this pattern is obvious from available case studies, our understanding of population dynamics in large herbivore populations suffers from a biased distribution of studies. First, reliable information exists for only 16 of about 250 extant species of large herbivores, a sampling intensity of $6 \%$. More importantly, 15 of the 16 species are temperate ungulates, while most ungulate species occur in the tropics. We thus require detailed information about variability of vital rates for large tropical herbivores. Differences in seasonality and in predation pressure may well result in different population dynamics for temperate and tropical ungulates ${ }^{33,34}$. To establish how variation in demographic variables affects population size, however, we need more studies based on marked animals monitored over several years. Such studies will enable us to combine the observed temporal variation of a given vital rate with the calculated effect of a change in this vital rate (elasticity) to correctly assess the respective roles of recruitment and adult survival on population dynamics of large herbivores. Recent intensive radio-tracking studies have been particularly useful because they often obtained information on causes of death ${ }^{17,19,35}$. Knowledge of causes of death allows a better estimation of the impacts of different mortality factors.

Many long-term studies of population dynamics of large herbivores have relied almost exclusively on observational evidence. Experimental manipulations of population size ${ }^{36}$ and of other ecological variables such as predation pressure would provide more reliable information. Manipulations would also provide data on the effects of population density or predation over a shorter time than observational studies. Ungulate populations that are subject to hunting or other forms of artificial control provide ideal opportunities for experimental tests of density dependence ${ }^{17}$. Predator control and predator reintroduction programs provide the opportunity to assess the role of predation. Therefore, cooperation
among researchers and government agencies in long-term studies of ungulates is likely to advance our understanding of population ecology while providing useful information for conservation and management.

## Acknowledgements

We are grateful to S.D. Albon, M.S. Boyce, J.A. Byers, A.J.M. Hewison, A. Loison, J.D. Nichols, D. Pontier, B.E. Sæther and an anonymous referee for constructive comments on earlier drafts of this manuscript. This work was supported by a grant from the Centre National de la Recherche Scientifique (Programme 'Environnement, Vie et Sociétés'). MF-B acknowledges the financial support of the Natural Sciences and Engineering Research Council (Canada) and the Ministère de l'Education Nationale (France).

## References

1 Caughley, G. (1977) Analysis of Vertebrate Populations, John Wiley \& Sons
2 Tuljapurkar, S. and Caswell, H. (1997) Structured-Population Models in Marine, Terrestrial, and Freshwater System, Chapman \& Hall
3 Lebreton, J.D. et al. (1993) The statistical analysis of survival in animal populations, Trends Ecol. Evol. 3, 91-95
4 Sæther, B.E. (1997) Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms, Trends Ecol. Evol. 12, 143-149
5 Gaillard, J-M. et al. (1989) An analysis of demographic tactics in birds and mammals, Oikos 56, 59-76
6 Eberhardt, L.L. (1977) Optimal management policies for marine mammals, Wildl. Soc. Bull. 5, 162-169
7 Purvis, A. and Harvey, P.H. (1995) Mammal life-history evolution: a comparative test of Charnov's model, J. Zool. Lond. 237, 259-283
8 Menkens, G.E. and Boyce, M.S. (1993) Comments on the use of time-specific and cohort life tables, Ecology 74, 2164-2168
9 McCullough, D.R. et al. (1994) Sources of inaccuracy in black-tailed deer herd composition counts, J. Wildl. Manage. 58, 319-329
10 Link, W.A. and Nichols, J.D. (1994) On the importance of sampling variance to investigations of temporal variation in animal population size, Oikos 69, 539-544
11 Fowler, C.W. (1987) A review of density dependence in populations of large mammals, in Current Mammalogy (Genoways, H.H., ed.), pp. 401-441, Plenum Press
12 Clutton-Brock, T.H. et al. (1992) Early development and population fluctuations in Soay sheep, J. Anim. Ecol. 61, 381-396
13 Clutton-Brock, T.H. and Lonergan, M.E. (1994) Culling regimes and sex ratio biases in Highland red deer, J. Appl. Ecol. 31, 521-527
14 Gaillard, J-M. et al. (1993) Roe deer survival patterns: a comparative analysis of contrasting populations, J. Anim. Ecol. 62, 778-791
15 Jorgenson, J.T. et al. (1997) Effects of age, sex, disease and density on survival of bighorn sheep, Ecology 78, 1019-1032
16 Benton, T.G. et al. (1995) Does environmental stochasticity matter? Analysis of red deer life-histories on Rhum, Evol. Ecol. 9, 559-574
17 Bartmann, R.M. et al. (1992) Compensatory mortality in a Colorado mule deer population, Wildl. Monogr. 121, 1-39
18 Festa-Bianchet, M. et al. (1994) Mountain goat recruitment: kid production and survival to breeding age, Can. J. Zool. 72, 22-27
19 Singer, F.J. et al. (1997) Density dependence, compensation, and environmental effects on elk calf mortality in Yellowstone National Park, J. Wildl. Manage. 61, 12-25
20 Linnell, J.D.C. et al. (1995) Who killed Bambi? The role of predation in the neonatal mortality of temperate ungulates, Wildl. Biol. 1, 209-223
21 Milner-Gulland, E.J. (1994) A population model for the management of the saiga antelope, $J$. Appl. Ecol. 31, 25-39
22 Gaillard, J-M. et al. Early survival in roe deer: causes and consequences of cohort variation in two contrasted populations, Oecologia (in press)
23 Clutton-Brock, T.H. and Albon, S.D. (1989) Red Deer in the Highlands, Blackwell
24 Owen-Smith, N. (1990) Demography of a large herbivore, the greater kudu Tragelaphus strepsiceros, in relation to rainfall, J. Anim. Ecol. 59, 893-913

25 Fancy, S.G. et al. (1994) Demography of the Porcupine caribou herd, 1983-1992, Can. J. Zool. 72, 840-846
26 Sams, M.G. et al. (1996) Physiological correlates of neonatal mortality in an overpopulated herd of white-tailed deer, J. Mamm. 77, 179-190
27 Cransac, N. et al. Patterns of mouflon (Ovis gmelini) survival under moderate environmental conditions: effects of sex, age and epizootics, Can. J. Zool. (in press)
28 Escos, J. et al. (1994) Application of the stage-projection model with density-dependent fecundity to the population dynamics of Spanish ibex, Can. J. Zool. 72, 731-737
29 Walsh, N.E. et al. (1995) Evaluating growth of the Porcupine Caribou Herd using a stochastic model, J. Wildl. Manage. 59, 262-272
30 Lebreton, J.D. and Clobert, J. (1990) Bird population dynamics, management and conservation: the role of mathematical modeling, in Bird Population Studies: Their Relevance to Conservation and Management (Perrins, C.M., Lebreton, J.D. and Hirons, G.J.M., eds), pp. 105-125, Oxford University Press
31 Wilber, J.P. et al. (1991) Effects of seasonally varying diet quality on collared peccary population dynamics - a simulation study, Ecol. Model. 53, 109-129
32 Hatter, I.W. and Janz, D.W. (1994) Apparent demographic changes in black-tailed deer associated with wolf control on northern Vancouver Island, Can. J. Zool. 72, 878-884
33 Gasaway, W.C. et al. (1996) Persistent low densities of plains ungulates in Etosha National Park, Namibia: testing the food-regulating hypothesis, Can. J. Zool. 74, 1556-1572
34 Fryxell, J.M. (1987) Food limitation and demography of a migratory antelope, the white-eared kob, Oecologia 72, 83-91
35 Ballard, W.B. et al. (1991) Population dynamics of moose in South-central Alaska, Wildl. Monogr. 114, 1-49
36 Sinclair, A.R.E. (1989) Population regulation in animals, in Ecological Concepts (Cherrett, J.M., ed.), pp. 197-241, Blackwell Scientific Publications
37 Dusek, G.L. et al. (1989) Population ecology of white-tailed deer along the lower Yellowstone River, Wildl. Monogr. 104, 1-68

38 Coughenour, M.B. and Singer, F.J. (1996) Elk population processes in Yellowstone National Park under the policy of natural regulation, Ecol. Appl. 6, 573-593
39 Festa-Bianchet, M. et al. (1995) Life-history consequences of variation in age of primiparity in bighorn ewes, Ecology 76, 871-881
40 Skogland, T. (1985) The effects of density-dependent resource limitations on the demography of wild reindeer, J. Anim. Ecol. 54, 359-374
41 Choquenot, D. (1991) Density-dependent growth, body condition, and demography in feral donkeys: testing the food hypothesis, Ecology 72, 805-813
42 Pac, D.F. et al. (1991) Mule Deer Population Organization, Behavior and Dynamics in a Rocky Mountain Environment, Montana Department of Fish, Wildlife \& Park
43 Crête, M. et al. (1996) Relative contribution of decreased productivity and survival to recent changes in the demographic trend of the Rivière George Caribou Herd, Rangifer 9, 27-36
44 Loison, A. et al. (1994) New insight on survivorship of female chamois (Rupicapra rupicapra) from marked animals, Can. J. Zool. 72, 591-597
45 Toïgo, C. et al. (1997) Adult survival of the sexually dimorphic Alpine ibex (Capra ibex ibex), Can. J. Zool. 75, 75-79
46 Hoefs, M. and Bayer, M. (1983) Demographic characteristics of an unhunted Dall sheep (Ovis dalli) population in southwest Yukon, Canada, Can. J. Zool. 61, 1346-1357
47 Unsworth, J.W. et al. (1993) Elk mortality in the Clearwater drainage of Northcentral Idaho, J. Wildl. Manage. 57, 495-502
48 Jorgenson, J.T. et al. (1993) Harvesting bighorn ewes: consequences for population size and trophy ram production, J. Wildl. Manage. 57, 429-435

49 Clutton-Brock, T.H. et al. (1987) Interactions between population density and maternal characteristics affecting fecundity and juvenile survival in red deer, J. Anim. Ecol. 56, 857-871
50 Burnham, K.P. et al. (1987) Design and Analysis Methods for Fish Survival Experiments Based on Release-Recapture, American Fisheries Society Monograph 5, Bethesda

## Do you want to reproduce material from TREE?

This publication and the individual contributions contained in it are protected by the copyright of Elsevier Science. Except as outlined in the terms and conditions (see pp. iii and iv), no part of Trends in Ecology \& Evolution may be reproduced, either in print or in electronic form, without written permission from Elsevier Science. Please send any permission requests to:

Elsevier Science Ltd<br>PO Box 800 Oxford<br>UK OX5 1DX

## Letters to TREE

Correspondence in TREE may address topics raised in very recent issues of TREE, or other matters of general current interest to ecologists and evolutionary biologists. Letters should be no more than 500 words long with a maximum of 12 references and one small figure; original results, new data or new models are not allowed. Letters should be sent by e-mail to TREE@ elsevier.co.uk. The decision to publish rests with the Editor, and the author(s) of any TREE article criticized in a Letter will normally be invited to reply. Full-length manuscripts in response to previous TREE articles will not be considered.

## Students!

## 50\% discount on <br> Trends in Ecology \& Evolution subscriptions!

For details see subscription card bound in this issue
declining for more than 12 years, and grains make up about $80 \%$ of the world's food ${ }^{2}$.

Supplies of arable land for crop production are facing major problems. Approximately $30 \%$ of the world's arable land has been abandoned during the past 40 years because of soil erosion, and this loss is intensifying ${ }^{3}$. If this loss continues and/or increases until the year 2100 as in TARGETS, then more than $70 \%$ of the world's arable land will be lost. The TARGETS model assumes that there will be recovery of the degraded land, however, the model neglects the fact that 500 years are needed to replace 25 mm of soil and a minimum of 150 mm is needed for crop production ${ }^{3}$. Furthermore, about 0.5 ha of cropland is needed for a plant/animal diet similar to that of Europe and the United States; however, there is currently only an average of 0.27 ha of cropland per capita in the world.

The TARGETS model has an interesting dimension that provides three perspectives to the year 2100. These include a hierarchist utopia, an egalitarian utopia, and an individualist utopia. This assessment helps to gain different perspectives of society depending on the analysis.

Rotmans and de Vries and their colleagues have contributed a valuable interdisciplinary study concerning the influences of global resources and perspectives on worldwide change. As the authors stated in the preface, it will be up to the readers to judge their investigation. They express hope that other scientists will participate in helping our government leaders and the interested public to recognize the larger picture. The results ought to inspire leaders and the public to develop and devise strategies designed to build a sustainable global future.

Thus, the volume is especially timely and should be of interest to a wide array of scientists, social scientists, and the public interested in global change and the future of society. The book is well documented, illustrated, and includes many tables that enhance its value as a source book.

## David Pimentel

College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853-0901, USA

## References

1 Pimentel, D. (1997) in Canadian Society of Animal Science, Proceedings in Montreal, Quebec (Scott, S.L. and Zhao, X., eds), pp. 17-26, Canadian Society of Animal Science
2 WHO (1995) Bridging the Gaps, World Health Organization
3 Pimentel, D. et al. (1995) Science 267, 1117-1123

## Erratum

Gaillard, J-M., Festa-Bianchet, M. and Yoccoz, N.G. Trends Ecol. Evol. 13, 58-63 (February 1998)
Table 3 (below) was omitted from the published version of this article.
We apologise to the authors and our readers for this unfortunate error. Ed.
Table 3. Variation in juvenile survival in response to environmental stochasticitya in populations of large herbivores (with at least 5 years' monitoring)

| Species | Refs | Mean survival | Min | Max | CV | $\mathrm{N}^{\text {b }}$ | Methods ${ }^{\text {c }}$ | Analysis ${ }^{\text {d }}$ | Number of years |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mule deer (Odocoileus hemionus) | 42 | (1) 0.271 | 0.028 | 0.451 | 0.420 | 242 | CC | DA | 14 |
|  |  | (2) 0.334 | 0.165 | 0.647 | 0.413 |  | CC | DA | 9 |
|  | 17 | (3) 0.300 | 0.071 | 0.537 | 0.560 |  | RT | CR | 6 |
| Reindeer (Rangifer tarandus) | 40 | (4) 0.567 | 0.230 | 0.900 | 0.472 |  | CC | DA | $6{ }^{\text {f }}$ |
| Greater Kudu | 24 | (5) 0.449 | 0.074 | 0.739 | 0.561 | 23-948 | CMR | DA | 11 |
| (Tragelaphus strepsiceros) |  | (6) 0.446 | 0.127 | 0.800 | 0.469 | 45-108s | CMR | DA | 11 |
| Bighorn sheep (Ovis canadensis) | 39 <br> 48 (updated) | (7) 0.475 | 0.098 | 0.795 | 0.546 | 876 | CMR | CR | 21 |
|  |  | (8) 0.387 | 0.144 | 0.566 | 0.377 | 520 | CMR | CR | 12 |
| Roe deer (Capreolus capreolus) | 22 (updated) | (9) 0.414 | 0 | 0.829 | 0.663 | 107 | CMR | CR | 10 |
|  |  | (10) 0.537 | 0.309 | 0.808 | 0.273 | 287 | CMR | CR | 10 |
| Soay sheep (Ovis aries) | 12 | (11) $0.623^{\mathrm{h}}$ | 0.081 | 0.903 | 0.581 | 355 | CMR | DA | 6 |
| Moose (Alces alces) | 35 | (12) 0.420 | 0.174 | 0.609 | 0.411 | 198 | RT | CR | $7{ }^{\text {i }}$ |
| Red deer (Cervus elaphus scoticus) | 49 | (13) 0.683 | 0.520 | 0.794 | 0.123 | 755 | CMR | DA | 13 |
| Dall sheep (Ovis dalli) | 46 | (14) 0.773 | 0.420 | 1 | 0.237 |  | CC | DA | 10 |
| Wapiti (Cervus elaphus canadensis) | $\begin{aligned} & 38 \\ & 19 \end{aligned}$ | $\begin{aligned} & (15) 0.326 \\ & (0.427)^{\mathrm{k}} \end{aligned}$ | $(0.135)^{\mathrm{k}}$ | $(0.624)^{k}$ | $(0.485)^{k}$ | $(127){ }^{\text {k }}$ | CC | DA | 15 |
| Saïga (Saiga tatarica) | 21 | (16) 0.528 | 0.192 | 0.671 |  |  |  |  |  |
| Pronghorn (Antilocapra americana) | J. Byers (pers. commun.) | (17) 0.142 | 0.010 | 0.410 | 0.882 |  | CMR | DA | 13 |
| Mountain goat (Oreamnos americanus) | 18 (updated) | (18) 0.631 | 0.421 | 0.769 | 0.226 | 129 | CMR | DA | 6 |
| White-tailed deer (Odocoileus virginianus) | 37 | 0.677 | 0.520 | 0.900 | 0.198 |  | CC | DA | 6 |

[^0]
[^0]:    a-e See Table 2.
    ${ }^{\text {f }}$ Variation among contrasted populations.
    gAssumed to represent the largest and smallest sample size for a given year.
    ${ }^{n}$ Winter mortality only.
    Variation among a combination of years and areas.
    jWinter survival (November to May) only.
    kEstimates from a subset of radiomarked calves during 4 years.
    IMethods and N not detailed in the original paper. Mean survival probability was obtained using the frequency of good and bad summer/winter conditions given in the paper.

