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■ Abstract In large-herbivore populations, environmental variation and density
dependence co-occur and have similar effects on various fitness components. Our re-
view aims to quantify the temporal variability of fitness components and examine how
that variability affects changes in population growth rates. Regardless of the source
of variation, adult female survival shows little year-to-year variation [coefficient of
variation (CV<10%)], fecundity of prime-aged females and yearling survival rates
show moderate year-to-year variation (CV<20%), and juvenile survival and fecundity
of young females show strong variation (CV>30%). Old females show senescence in
both survival and reproduction. These patterns of variation are independent of differ-
ences in body mass, taxonomic group, and ecological conditions. Differences in levels
of maternal care may fine-tune the temporal variation of early survival. The imma-
ture stage, despite a low relative impact on population growth rate compared with the
adult stage, may be the critical component of population dynamics of large herbivores.
Observed differences in temporal variation may be more important than estimated rel-
ative sensitivity or elasticity in determining the relative demographic impact of various
fitness components.
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INTRODUCTION: Widespread Large Herbivores
in Variable Environments

Large terrestrial mammalian herbivores (with an adult mass of≥10 kg) are found
in most ecosystems, from arctic tundra to tropical forest (134). They face not
only very different climates, but also great variation in predation pressure, risk
of disease, and human interference. Despite these potential sources of temporal
variability in survival and recruitment, populations of large herbivores are of-
ten considered to be only weakly affected by temporal variation and are often
described with deterministic age-structured models (46). In this review we first
examine and quantify temporal variation in some fitness components for popula-
tions of large herbivores, including survival and reproduction at different stages
of an individual’s life cycle (Figure 1). Temporal variation in at least one fitness
component has been measured for>30 species of large herbivores. We then as-
sess the effects of taxonomic position, ecosystem, and body size on patterns of

Figure 1 Life cycle graph of a large herbivore female:Circled numbers: 1, newborn [most
ungulates are birth-pulse species (155)]; 2, weaned young (around 6 months for most species); 3,
yearling; 4, 2-year-old (often the minimum age of primiparity); 5, prime-aged; and 6, senescent
(older than a threshold age).Straight linesindicate transitions from one age group to the next,
and curved linesindicate reproduction (and therefore production of newborns). These fitness
components describe the development of individuals through the life cycle: PRS, pre-weaning
survival [summer survival of young in temperate species (e.g. 29)]; POS, postweaning survival
[winter survival in temperate species (e.g. 29)]; YS, yearling survival (survival probability between
1 and 2 years); PAS, prime-age adult survival [yearly survival between 2 and 7 years in small- and
medium-sized species like Soay sheep (22), roe deer (64), or bighorn sheep (87); between 2 and 12
years in red deer (SD Albon, personal communication)]; SS, senescent survival [yearly survival of
females older than a threshold age (7 or 10 years)]; FP, fecundity of yearling females [product of
average litter size and proportion of females pregnant; differs from 0 in only a few medium-sized
species like white-tailed deer or mule deer (117)]; FY, fecundity of young females [2-year-olds
in most cases; in large species, primiparity is at 3 or 4 years or even older (e.g. see 56)]; FA,
fecundity of prime-aged females; FS, fecundity of senescent females.
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temporal variation. Finally, we propose that there may be a trade-off between
the potential importance of a fitness component for changing population growth
rate and its observed temporal variation: Those fitness components with the great-
est potential impact on population growth rate tend to have the least temporal
variability.

Populations of large herbivores display four major types of temporal variation.
First, in seasonal habitats, there is predictable environmental variation over each
year. Second, year-to-year fluctuations in climate lead to unpredictable, sometimes
marked environmental variation. Third, density-dependent responses occur when
populations overshoot a threshold density (58). Fourth, changes in abundance or
in behavior of predators, prevalence of diseases, or human activities may produce
environmental variation. Consequently, temporal variation should play a promi-
nent role in the population dynamics of large herbivores (67, 156), contrary to
the simplistic approach that downplays environmental stochasticity for long-lived
species. Considerable progress has been made during the last 10 years to better
understand demography in stochastic environments (178, 179) and to account for
environmental variation, which has been shown to strongly affect estimates of pop-
ulation growth (178) and fitness of various life history strategies (135). It has also
been suggested that, for large populations, the extinction risk from demographic
stochasticity may be less important than the risk from environmental stochasticity
(97), although reliable empirical data are lacking for large herbivores. Therefore,
the effects of temporal variation on population dynamics are likely to have strong
fundamental and applied implications.

OVERVIEW OF POPULATION DYNAMICS
OF LARGE HERBIVORES

Covariation of Body Size, Lifespan, and Iteroparity

Large herbivores are among the heaviest mammals, ranging from<10 to>1000
kg [we excluded species exceeding 800 kg, because their population dynamics
may differ from those of smaller species (136) and there is very little information
on temporal variation of their fitness components]. Thus, the strong allometric
relationships commonly found for most life history traits (144) lead large her-
bivores to show low fecundity and high adult survivorship (190), with only one
or two offspring produced once per year (81) over a potential female lifespan
exceeding 15 years (108). Large herbivores have generation times of>4 years
(125) and low adult turnover (125). They are strongly iteroparous (69): Females
generally reproduce>5 times (12, 13, 20, 29), and a few individuals may repro-
duce 15 times during a lifetime (63). Only suids deviate from this general model
by having large litters (43) and short generation times, at least in heavily hunted
populations (71). But because they are omnivores, we exclude suids from our
review.
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A Life Cycle Graph for Large Herbivores

Populations of large herbivores are strongly age- and sex-structured. In most
species, a polygynous mating system leads to pronounced sexual size dimorphism
(109), which correlates with marked sexual differences in life history traits (29). In
particular, male survival is typically lower than female survival at all ages (29). Age
has very strong effects on both reproduction and survival (Figure 1). Large her-
bivores fit Caughley’s model of a dome-shaped age-dependent survival rate (23),
with clearly identifiable juvenile (pre- and postweaning), prime-age (adults), and
senescent (old adults) stages (64, 87). Here we refer to prime-aged females as
those in age classes before the onset of survival senescence [often from 2 to 7–8
years (108)]. Juvenile survival can be subdivided into a preweaning component,
during which mortality is mostly dependent on maternal care, and a postwean-
ing component, when most mortality is care independent (66, 111). Yearling sur-
vival (from 1 to 2 years of age) is often lower and more variable than survival
of prime-aged adults (29, 87) and therefore must be considered separately. Age-
related variation in fecundity and litter size is also common, although it is often
less pronounced than variation in survival (45). Primiparity is generally at 2 or
3 years, but in some small- or medium-sized species, females can breed during
their first year (117). After first reproduction in most species, females attempt
to reproduce every year, but in some populations females will not conceive for
1–2 years after weaning an offspring (92, 130, 176). In most ecosystems, births
are highly synchronous (155), timed to maximize offspring survival by reducing
predation risk (61) and synchronized with seasonal differences in vegetation quality
or availability (52, 153).

Demographic Patterns of Populations
of Large Herbivores

Populations of large herbivores have low growth rates (16), but compared with
other vertebrates, they have high maximum population growth rates relative to
their body size. Thus, monotocous species (those with a fixed litter size of one)
like horses, red deer, or muskox may reach finite rates of increase (λ) of 1.25
to 1.35 (113, 148, 198), whereas polytocous species (with variable litter size and
generally between 1 and 3 offspring per litter) like white-tailed deer may have
λ > 1.5 (181). High potential population growth allows large herbivores to rapidly
exploit areas where they may be introduced (24).

Demographic analyses reveal that the elasticity of adult survival is at least three-
fold higher than that of juvenile survival or of fecundity rates (48, 83, 132, 187).
Elasticity measures relative sensitivity, which can be defined as the effect on
population growth rate of a proportional change in a given fitness component
(39). Therefore, a proportional change in a fitness component with high elasticity
will have a greater effect on population growth rate than the same change in a
fitness component with low elasticity. Thus, the population growth rate of large
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herbivores is much more sensitive to a given relative variation in adult survival
than to the same relative variation in any other fitness component.

Temporal variation in abundance of large herbivores can have widely different
sources, including density- and climate-dependent food limitation or control by
humans, predation, and disease. Density-independent limitation (165) and density-
dependent regulation (165) co-occur in most populations (115, 165), so that the
impact on population growth of density-independent factors such as bad weather
typically increases with population density (127, 146).

HOW AND WHY FITNESS COMPONENTS
OF POPULATIONS OF LARGE HERBIVORES
VARY OVER TIME

Heterogeneity of Data Type and Statistical Analyses:
A Methodological Caveat

Ideally, our review should have included only studies based on long-term moni-
toring of individually recognizable animals, analyzed with methods that account
for differences in recapture probability, because those studies minimize errors in
estimates of fitness components and reduce the risk of sampling bias. Currently,
however, only a handful of studies fit those criteria.

We included studies lasting≥3 years and providing yearly estimates of at
least one fitness component (see supplemental appendix at http://www.annurev.
org). We thus faced considerable heterogeneity of data quality and statistical anal-
yses. As a result, it was not always possible to transform the results of different
studies into the fitness components defined in Figure 1. Standardized informa-
tion on juvenile survival and fecundity rates was particularly difficult to extract
from the literature. Several studies reported age ratios such as young:female or
young:adult female. These ratios are of limited usefulness (116) because they
combine juvenile survival and fecundity rate and ignore changes in female age
structure. We thus analyzed age ratios separately. Studies also used widely differ-
ent techniques to estimate fitness components, especially for survival. The quality
of the data was highest for studies that monitored individually marked animals
of known age and estimated survival by accounting for differences in detection
probability of marked animals (49 of 141 studies). When juvenile and yearling
survival rates were analyzed separately by sex, we used female survival. Stud-
ies based on comparing age ratios in successive years (59 of 141 studies) were
of the lowest quality. Survival rates extracted from count ratios are affected by
large sampling errors, partly because ratios can change after changes in either
the numerator or the denominator. For example, a change in the juvenile:adult
ratio could be due to changes in survival (or in sightability) of adults or of
juveniles (116).
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Temporal Variation in Survival

Preweaning Survival (Immature Stage 1)Most estimates of preweaning sur-
vival were based on individually marked newborns. Therefore, data quality was
good [28 estimates were of high quality vs 9 of low quality (see supplemental ap-
pendix at http://www.annurev.org)]. Preweaning survival is generally low (mean
of 0.638,N = 46) and varies markedly over time (CV of 0.265,N = 39) in most
populations (Figure 2) in response to a great diversity of proximal factors. Most
preweaning mortality occurs within 1 month of birth (2, 20, 76, 96, 129). It is
likely that several studies overestimated preweaning survival, because unless all
juveniles are caught and marked immediately after birth, some preweaning deaths,
especially of neonates, will not be detected by researchers.

Survival to weaning is generally dependent on maternal care, especially when
predation on neonates is not a major source of mortality. Thus, maternal attributes

Figure 2 Temporal variation in fitness components of large herbivores. Each box-plot shows,
for the mean yearly estimates and their coefficients of variation in a given population for a given
ecosystem type (Mountain-Arctic, Temperate, and Tropical), the interquartile (25%–75%) range
(given by thefilled box), 1.5 times this range (brackets), the median (white bar) and the “outliers”
(horizontal bars). Note that the scale for CVs for mountain ungulates is different from the others.
PRS, preweaning survival; POS, postweaning survival; YS, yearling survival; PAS, yearly survival
of prime-age adults; SS, yearly survival of old adults; FY, fecundity of young females; FAD,
fecundity of prime-age adults; FS, fecundity of old females; SJ, juvenile survival; Ratio, calf:cow
ratio.
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such as age (3, 55, 76, 90, 96), size (21, 96, 168), reproductive experience (95, 139,
149), dominance status (31, 106), previous reproductive status (31, 53), or the
size of female kin groups (138) can have strong effects on preweaning survival.
Generally, the reproductive success of large multiparous prime-aged females of
high social rank is much less affected by environmental conditions than is that of
small, primiparous, and young females of low social rank.

Weather during gestation can affect preweaning survival. In temperate species,
high snowfall and long duration of snow cover during the previous winter of-
ten reduce preweaning survival, likely by affecting maternal nutrition during late
gestation (2, 114). Likewise, the amounts of precipitation during parturition and
lactation cause preweaning survival to vary over years, especially for polytocous
species (19, 65, 91) and at high density for monotocous species (146). Weather
generally affects early survival by changing the availability of high-quality for-
age (19); direct effects of adverse weather on survival are exceptional (126). The
strong positive correlation between preweaning survival, maternal condition, and
weather during gestation and lactation is likely due to the importance of birth
weight for early survival, an effect that tends to become stronger with adverse
weather or high population density (3, 7, 33, 50, 65, 76, 100, 157, 171, 177). High
forage quality and quantity often increase preweaning survival of large herbivores
(131, 152, 197), possibly by improving milk quality (197).

Malnutrition appears to be a major cause of early mortality during some years
(151) and, in extreme cases, may lead females to abandon their offspring (99).
Malnutrition can also predispose juveniles to other sources of mortality. In partic-
ular, the transfer of passive immunity to newborns may be compromised at high
population density (157).

Density dependence in preweaning survival has been reported in many large
herbivores (26, 33, 65, 114, 120, 166), but preweaning survival of red deer (31),
reindeer (171), and bighorn sheep (146) did not decrease with increasing density.
Preweaning survival may therefore be more sensitive to population density in
polytocous species that have a high energy expenditure per breeding attempt than
in monotocous species (65).

Where predators are present, predation is often the main source of early mor-
tality (105), and preweaning survival is generally<50% (47) and can be as low
as 1% (20). Predation risk, however, is not always independent of maternal care.
Maternal experience can decrease fawn vulnerability to predators (20, 139). The
timing of birth may also account for temporal variation in preweaning survival.
Late birth dates often lower survival in temperate ungulates (31, 33, 52) by short-
ening the period for access to growing forage. In the presence of predators, caribou
calves born during the birth peak may enjoy higher survival than those born earlier
or later (2). Finally, parasites (107), disease (126), and high levels of inbreeding
(102, 162) may reduce preweaning survival to 10% in some years. Because all of
these factors may vary spatially within a population in a given year, spatial het-
erogeneities in preweaning survival are expected to occur and have been found in
pronghorn (50) and caribou (195), but not in red deer (76).
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Postweaning Survival (Immature Stage 2)The data available to assess temporal
variation in survival from weaning to 1 year include a narrower range of species
than those available for preweaning survival. Similar to preweaning survival, data
quality was good [20 estimates of high quality vs 7 of low quality (see supplemental
appendix at http://www.annurev.org)]. Postweaning survival varied widely from
year to year in most populations [mean of 0.697,N = 30; CV of 0.279,N =
26 (Figure 2)], but fewer factors were reported to affect postweaning survival
than preweaning survival. Most reported causes of postweaning mortality, such as
winter severity and density dependence, were care independent, and the proximate
cause of mortality was usually starvation. Negative effects of severe winters have
been reported for several temperate species (62, 78, 101, 166), but muskoxen seem
to be highly resistant to deep snow and ice, at least in colonizing populations
(86). Density dependence in postweaning survival was reported in several species
(11, 31, 33, 85, 146, 166, 171) and appears to be more common in postweaning than
in preweaning survival for monotocous species. Bartmann et al (11) provided the
best experimental demonstration of density dependence in juvenile survival: By
allowing density of mule deer to increase from 44 to 133 per km2, they caused
postweaning survival to decrease from 0.456 to 0.176. Predation (11) and late
birth (166) can decrease postweaning survival in some years. Other factors, such
as spring weather (161), birth weight (33), and maternal dominance status (31) may
affect postweaning survival, but appear to be less important than for preweaning
survival.

Because many studies did not distinguish pre- and postweaning survival, we
examined overall variation in first-year survival. Data quality was reasonable [21
estimates of high quality vs 19 of low quality (see supplemental appendix at
http://www.annurev.org)]. Juvenile survival displayed wide yearly variations in
most populations [mean of 0.518,N = 51; CV of 0.346,N = 43 (Figure 2)]. Pre-
dation (41, 49, 73, 159, 180, 192), population density (89, 137, 160, 167, 174, 175,
189, 191), winter severity (9, 110, 146, 148, 159, 167, 192), weather affecting food
supply during lactation (49, 137, 172, 189), genotype (143), and care-dependent
factors such as birth weight (192), nursing time (160), or mother aggressiveness
(159) affect juvenile survival. Therefore, juvenile survival is highly variable within
and among populations of large herbivores (67).

Yearling Survival (Immature Stage 3) Because most studies did not estimate
yearling survival separately from adult survival, there is a limited amount of reli-
able information [10 estimates of high quality vs 3 of low quality (see supplemental
appendix at http://www.annurev.org)] on temporal variation for this fitness com-
ponent. Yearling survival showed the same patterns of variation as postweaning
survival, but the mean was higher and the variability was lower [mean of 0.872,
N = 16; CV of 0.124,N = 14 (Figure 2)]. Population density (31, 33, 87, 164),
adverse weather (137, 148, 175, but see 86), predation (73), and disease (164, 175)
accounted for most yearly variation in yearling survival in the absence of hunting.
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Adult Female Survival (Prime-Age Stage)Estimates of adult female survival
are generally based on high-quality data involving long-term monitoring of rec-
ognizable individuals [28 estimates of high quality vs 19 of low quality (see sup-
plemental appendix at http://www.annurev.org)]. The data reveal a striking and
consistent pattern of high survivorship and very low yearly variation regardless of
the sources of mortality [mean of 0.874,N = 57; CV of 0.087,N = 48 (Figure 2)].

We found very limited evidence of density dependence in adult survival of large
herbivores [in buffalo (120), caused by undernutrition and affecting mainly old
animals, and in island populations of Soay sheep (34) and red deer (30), although
in both cases senescent animals were included in the estimate of female survival].
Stable adult survival despite wide changes in density has been reported in many
species (35, 42, 68, 87, 191).

Adult survival also appears to be partly buffered against environmental sources
of variation. Although winter severity (124, 128, 140, 161), adverse spring weather
(161), severity of dry season (60), or severe overgrazing of the summer range
(57) can decrease adult survival in some species, the survival of adult females
was not correlated with any variable in roe deer (68) and was not affected by
forage availability in bison (184), by severe drought in greater kudu (137), by
food limitation in reindeer (167), by climate in red deer (110), moose (9), mule
deer (94), and pronghorn (10), or by pneumonia in chamois (27). Disease may
affect survival of adult ungulates, but there is limited evidence from long-term
studies. For example, pneumonia epizootics had moderate and short-lived effects
on survival of adult female bighorn sheep (87) and mouflon (36). Where large
predators occur, they often account for much of the variation in adult survival,
typically causing>50% of yearly mortality (73, 126, 164, 188, 194).

It appears that moderate or high levels of temporal variation in adult-female
survival are mostly associated with rare events, such as epizootics of exotic diseases
and high predation risk due to individual specialist predators or “predator-pit”
situations, in which high levels of predation on a preferred but declining prey
species can be sustained because of the availability of alternative prey species
(73). In large herbivores, the stability of adult female survival relative to other
fitness components may reflect a strategy of risk minimization involving a reduction
of the maternal expenditure before any serious deterioration of female condition
(5, 54, 82, 154).

Old Adult Female Survival (Senescent Stage)In most species of large her-
bivores, the ages of live females can be estimated reliably only in animals< 3
years old. Consequently, temporal variation in survival of old females can be
measured only by very long-term monitoring: Typically,≥10 years are required
before known-age “old” females can be monitored. Very few studies have con-
sidered separately the survival of old and prime-age females, but available data
were of very high quality [six estimates of high quality vs one of low quality (see
supplemental appendix at http://www.annurev.org)]. Compared with prime-age
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females, old females have lower survival and are more sensitive to environmental
variation [mean of 0.811,N = 9; CV of 0.164,N = 8 (Figure 2)], possibly
because of tooth wear (64, 169). Old females are more affected than prime-age
females by die-offs in nyala (6), rainfall variation in greater kudu (137), and vari-
ation in food availability in reindeer (169). It has recently become evident that
individual heterogeneity plays a large role in survival to old age; life expectancy
is greater for larger than for smaller prime-aged females (15, 66). Failure to dis-
tinguish age classes and the widespread occurrence of survival senescence may
also bias the interpretation of reported density dependence in adult survival, as
unmanaged high-density populations typically include a high proportion of older
females.

Temporal Variation in Reproductive Traits

Fecundity of Young Females Reproductive patterns of large mammals are easier
to measure than are patterns of survivorship. Therefore, we found abundant data
of high quality on temporal variation in fecundity of young females, defined as
those of the youngest age at which≥10% of females were primiparous in a given
population. Fecundity of young females is highly variable both within and among
populations (8, 120, 163) and is more sensitive to adverse environmental conditions
than adult fecundity in both temperate (25) and tropical (196) ungulates [mean of
0.519,N = 32; CV of 0.612,N = 28 (Figure 2)]. In populations of medium-sized
species with abundant nutrition, however, the fecundity of young females can be as
high and as stable from year to year as that of prime-age females (20, 63, 84). The
main sources of variation in fecundity of young females are population density,
weather, and food supply, especially in medium- to large-sized species. Density-
dependent responses in age at primiparity have been reported in many large her-
bivores (25, 55, 59, 70, 85, 91, 120, 168). Female mass during the rut is often the
proximate factor of variation in age at first breeding (77, 158, 170). A threshold
mass must be reached before young females can reproduce (40, 51, 70, 85, 98), but
in bighorn sheep, mass during the rut may play a limited role (88). Finally, adverse
weather, such as drought (91) or severe winters (112), can lead to low fecundity of
young females. Interpopulation variability in age of primiparity is often caused by
differences in nutrition of young females, which can be independent of population
density or weather. Thus, some populations in poor habitats may be characterized
by late primiparity [e.g. 4–5 years instead of 2 for mountain goats (56)].

Fecundity of Prime-Age Females Many studies provide measurements of tem-
poral variation in fecundity of prime-age females. Unfortunately, however, most
studies pool prime-age and old adult females, leading to underestimation of mean
values and overestimation of the magnitude of variation. The importance of these
biases should depend on the proportion of old females included in the sample, and
most studies did not provide that information. As previously mentioned, for most
species it is impossible to know the exact age of females first marked as adults.
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Fertility of prime-aged females is generally high and varies little from year to year
[mean of 0.818,N = 59; CV of 0.125,N = 51 (Figure 2)]. Density dependence
in adult fecundity has been reported in several species, although density effects
are generally less evident than for age of primiparity (28, 85, 91, 93, 163, 184).
Other species, however, show either a weak (53) or no decline of adult fecun-
dity despite very high population densities (59, 70, 141, 147, 168). Skogland (168)
suggested that the fecundity of migratory populations should be less sensitive
to environmental variation than that of sedentary populations. Migratory popu-
lations of wildebeest, caribou, and elk do show stable fecundity of prime-aged
females, but constant adult fecundity has also been reported in sedentary popu-
lations of roe deer (70) and fallow deer (147), indicating that adult fecundity of
most large herbivores is resilient to a wide variety of environmental conditions
and may be a species-specific life history trait. Studies of moose (18), pronghorn
(20), and gazelles (8) confirm the high resilience of adult fecundity in ungulates.
The limited density-independent, year-to-year variation in adult fecundity usually
originates from yearly variation in weather such as March temperature (90), winter
and spring precipitation (184), winter severity causing high fetal mortality (10),
rainfall (14, 91), or snow depth and summer temperature (37). Body mass may
affect adult fecundity (21, 84, 193), and poor nutrition may depress it (1, 150, 163).
Body mass and population density can have an interactive effect, so that females
of a given mass are less likely to conceive at high than at low population density
(5), suggesting a reproductive strategy that minimizes risks to the mother. In some
species, individual females may not reproduce in some years, particularly after
having weaned an offspring (32, 92, 154).

Fecundity of Old Females Very few studies have investigated variation in fecun-
dity of old females. Similar to what we found for survival, fecundity of old females
is lower and more variable than that of prime-age females [mean of 0.783,N = 7;
CV of 0.134,N = 6 (Figure 2)], suggesting reproductive senescence. However,
reproductive senescence appears to be less precipitous and to have a later onset
than survival senescence (72). Successful reproduction by all but the very oldest
females has been reported in medium-sized species (15, 63, 133).

Litter Size In polytocous species, year-to-year variation in litter size is moderate
for primiparous females (mean of 1.267,N = 12; CV of 0.164,N = 10), low
for multiparous females (mean of 1.569,N = 27; CV of 0.092,N = 26), and
mostly associated with female nutrition. For captive white-tailed deer, litter size
increased from 1.11 for does on a low nutritional plane to 1.96 for those on a high
nutritional plane (185). Both winter severity (121) and population density (84, 186)
shape yearly variation in litter size by affecting female body mass. In moose, the
largest polytocous species, twinning rates are the most variable component of
fecundity and may be a sensitive indicator of habitat quality (18). Conversely, in
populations of medium-sized species with abundant food, litter size may be fixed
and independent of female age (20, 63).
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DO TAXONOMY, PHYLOGENY, ECOSYSTEM, AND BODY
SIZE AFFECT VARIATION IN POPULATION DYNAMICS
OF LARGE HERBIVORES?

Temporal Variation in Fitness Components and Taxonomy:
Cervids vs Bovids

Large herbivores include two major families within the order Artiodactyla: cervids
and bovids. The mean duration of studies included in our survey did not differ
significantly between these groups (7.5 years for cervids and 8.6 years for bovids,
P = 0.38). Although both yearling survival and litter size of primiparous females
are greater for cervids than for bovids, mean estimates of fitness components are
generally close (Table 1). In both families, survivorship of yearlings, adults, and
old individuals is higher than that of juveniles, while fecundity and litter size of
prime-aged females are higher than those of young females (Table 1). Bovids and
cervids also display the same patterns of temporal variation in fitness components,
with no significant difference between groups (Table 1).

Allometric Component of Temporal Variation
in Fitness Components

Allometric relationships are widespread among vertebrates (144), and we expected
that body size would have a marked effect on population dynamics of large herbi-
vores. Surprisingly, however, variation in adult mass explained little of the variation
in either mean estimates (r = 0.14,P = 0.53 for prime-age survival;r = 0.21,
P = 0.31 for juvenile survival;r = −0.26,P = 0.24 for fecundity of adult fe-
males;r = −0.55,P = 0.05 for fecundity of young females; Figures 3A and 3B)
or temporal variation (r = −0.04,P = 0.87 for prime-age survival;r = −0.31,
P = 0.14 for juvenile survival;r = 0.40,P = 0.06 for fecundity of adult females;
r = 0.48,P = 0.10 for fecundity of young females; Figures 3C and 3D) of fitness
components. We obtained similar results when we accounted for nonindependence
of traits of related species due to phylogenetic inertia (75), using the independent
contrasts method (79; Figure 3), by a taxonomy-based phylogeny (see 142 for fur-
ther details). In particular, prime age (r = −0.12,P = 0.60) and juvenile survival
(r = 0.08,P = 0.70), as well as their temporal variation (r = 0.07,P = 0.74 for
prime-age survival;r = −0.07,P = 0.74 for juvenile survival) appeared to be
independent of body mass (Figure 3A–C ). On the other hand, there may be an
allometric constraint on fecundity, especially for primiparous females, as longer
development with increasing size prolongs the period before maturation. The pro-
gressive decrease in mean value (r = −0.59,P = 0.04; Figure 3B) and increase in
variation (r = 0.63,P = 0.02; Figure 3D) of fecundity of young females as body
mass increases support this allometric interpretation. A similar pattern occurs for
prime-age fecundity (r = 0.23,P = 0.30; Figure 3D), suggesting that temporal
variation in recruitment rates increases with adult body mass.
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Figure 3 Allometric relationships between adult body mass of ungulate females and (A)
mean log-transformed estimates of prime-age and juvenile survival, (B) log-transformed
coefficients of variation of prime-age and juvenile survival, (C ) mean log-transformed
estimates of fecundity for adult and young females, and (D) log-transformed coefficients of
variation of fecundity for adult and young females. For species with data from more than
one population, the points indicate the median for each fitness component.
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Temporal Variation in Fitness Components in Different
Ecosystems: the Role of Seasonality and of Cover

Large herbivores in our survey have been studied in three major ecosystem types:
mountains and the arctic, temperate lowlands, and tropical areas. Despite marked
differences in climate and primary production, populations of large herbivores
show roughly similar demographic profiles and the same patterns of temporal
variation in fitness components in all ecosystems. In most populations, survival
and fecundity of prime-age adults are high and constant over time, whereas juve-
nile survival and fecundity of young females are low and highly variable over
time (Figure 2). In each ecosystem type, populations were studied in a wide
range of ecological conditions, including considerable variation in food availabil-
ity, population density, and predation pressure. However, there were no obvious
between-ecosystem differences in temporal variation in fitness components. On
the other hand, the amount of maternal energy allocated to reproduction seems
to affect both magnitude and temporal variation of early survival. In temperate
ecosystems, where most polytocous species occurred (81), they tended to show
both lower (mean of 0.594, SE= 0.038,N = 22 after excluding moose and Soay
sheep, whose twinning frequencies vary widely from year to year) and more vari-
able (CV of 0.288, SE= 0.040,N = 20) preweaning survival than monotocous
species (mean of 0.728, SE= 0.038,N = 8; and CV of 0.155, SE= 0.025,
N = 7; P = 0.10 and 0.07 for mean and CV, respectively).

IDENTIFYING THE CRITICAL COMPONENTS
OF POPULATION DYNAMICS OF LARGE HERBIVORES

Elasticity and Temporal Variability in Fitness
Components: Is There a Trade-off?

The demography and population dynamics of large herbivores can be summa-
rized as follows: Recruitment parameters (juvenile survival and some measures
of fecundity) combine low elasticity with high temporal variability, whereas adult
survival has the highest elasticity and the lowest temporal variability. It is impor-
tant that these age-related differences in temporal variability occur regardless of
whether the source of variation is stochastic (67) or density dependent (44); as we
have previously reported (67), the fitness components that are more susceptible to
stochastic effects are also more likely to show density dependence. These obser-
vations suggest that, in ungulates, there may be a trade-off between the potential
importance of a fitness component for changing population growth rate (its elas-
ticity) and the degree of observed temporal variation of that fitness component (its
coefficient of variation). It has been suggested that a similar trade-off may also
occur in other organisms (145). The resilience of adult survival to environmental
variation may be an example of canalization (see 173) of a trait with a very strong
influence on fitness.
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The relative importance of a fitness component for changes in population growth
rate depends on both its elasticity and its temporal variation; a trait such as adult
survival with high elasticity but little variability may not have a greater importance
in determining changes in population growth rate than a trait such as juvenile
survival with low elasticity but high variability. If there was a trade-off between
elasticity and temporal variation, then juvenile and adult survival could explain
similar amounts of the observed variation in population growth rate. To assess this
possibility, we considered three age classes of large herbivores: immature (before
the minimum age of primiparity), prime age (from the age of primiparity to the
onset of survival senescence), and old, and compared their contribution to temporal
variation in population growth rates. We then developed a simple model based on
recent developments of demography in stochastic environments (178, 179) and
applied it to populations of large herbivores for which temporal variation of all
fitness components had been measured.

Temporal Variation Makes the Difference

From five populations, the immature stage accounted for more of the observed
variation in growth rate [from 51% to 94% (Table 2)] than either the prime-
age or the old stage. For bighorn sheep and roe deer, long-term data were available
for two populations. Those studies suggest that the importance of the immature
stage for population growth rate may increase with environmental harshness; the

TABLE 2 Proportion of the total variation in population growth rate accounted for by
the main life history stages (immature, prime-age, and old) in five populations of large
herbivores monitored for>16 yearsa

Proportion (%) of Population Growth
Rate (Accounted for) by Life Stage

Population Species Immature Prime-age Old

Ram Mountain Bighorn sheep 69 13 18

Sheep River Bighorn sheep 55 22 23

Chizé Roe deer 94 5 1

Trois Fontaines Roe deer 73 19 7

Rum Red deer 51 44 4

aTemporal variation in the population growth rate can be expressed as the summation of the products of squared
elasticities and squared coefficient of variation of fitness components (179). Total variation in population growth rate
was thus calculated as [e2(PRS)×CV2(PRS)]+ [e2(POS)×CV2(POS)]+ [e2(YS)×CV2(YS)]+ [e2(PAS)×
CV2(PAS)]+ [e2(SS)×CV2(SS)]+ [e2(FY)×CV2(FY)]+ [e2(FAD)×CV2(FAD)]+ [e2(FS)×CV2(FS)]+
[e2(LSP)×CV2(LSP)]+ [e2(LSM)×CV2(LSM)] , wheree is the elasticity,CV is the coefficient of variation,PRS
is the preweaning survival,POSis the postweaning survival,YSis the yearling survival,PASis the yearly survival of
prime-aged females,SSis the yearly survival of old adults,FY is the fecundity of young females,FAD is the fecundity
of prime-aged females,FS is the fecundity of old females,LSPis the litter size of primiparous females, andLSM is
the litter size of multiparous females. The contribution of each life history stage was calculated as the proportion of
total variation in growth rate of a given population that was explained by that stage. (Note: the numbers represent
% that sum to 100% for a given population).
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contribution of this stage was higher for populations at Ram Mountain (bighorn
sheep) and at Chiz´e (roe deer), both of which showed strong density dependence,
than in the more productive populations at Sheep River (bighorn sheep) and Trois
Fontaines (roe deer). Although the relative effects of elasticity and temporal vari-
ation on ungulate population dynamics have not been previously assessed, most
studies suggest an overwhelming importance of the juvenile stage in accounting
for between-year variation in population growth rate (32, 35, 80, 106, 123, 183).
Exceptions to this pattern may include hunted populations of moose (17), de-
clining populations of caribou (38), and ungulates in Etosha National Park (74),
where hunting and predation led to high adult mortality. Elsewhere, we found
remarkably similar patterns of variation, despite including in our review popula-
tions with (55) and without predators (65) and populations that were introduced or
reintroduced (29, 36), feral (34), and semidomestic (7). Because the low elasticity
of fitness components during the immature stage is more than compensated for by
large temporal variation, for most populations of large herbivores, the immature
stage is the critical component of population growth. Therefore, we conclude that
temporal variation makes the difference.

PERSPECTIVES

Large herbivores have high economic value; they are often an important source of
revenue through sport hunting and ecotourism but can also be agricultural pests
or major traffic hazards (119). Consequently, the population dynamics of large
herbivores have been the subject of considerable research, and fitness components
have been measured in many populations and species. Although new technologies
and recent progress in estimation procedures have improved the quality of available
data, some problems persist.

Cohort Effects Lead to Interdependence
Among Life-History Stages

Contrary to the assumptions of current demographic models, successive life history
stages are not independent. Factors affecting fitness components during a cohort’s
early development may have delayed effects on that cohort’s performance later in
life (103). Long-term “quality effects” (65) are likely to be pervasive in populations
of large herbivores (4, 65, 122, 171, 182) and may lead to an underestimation of
the importance of the immature stage in shaping population dynamics.

Partitioning Biological Variability and Sampling Variability

In this review, we did not account for sampling errors that inevitably occur in
the estimation of fitness components. The confusion of temporal and sampling
variation may bias the assessment of temporal variation and decrease the reliability
of comparisons between fitness components (104). To our knowledge, only a study
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of mule deer reported temporal variation in fitness components after correcting
for sampling variation (11). We recommend that future studies attempt to assess
more accurately the role of temporal variation in ungulate population dynamics.
The available data, however, suggest that the importance of sampling variability
is likely greater for adult than for juvenile survival (67). Therefore, if sampling
variation were accounted for, the difference in temporal variation between adult
and juvenile survival that we reported here would be reinforced.

Data Quality, Modeling, and Population Dynamics: Where Do We Go from
Here? More than 20 years ago, Eberhardt (44) suggested that, in marine mam-
mals, an increase of population density would affect fitness components in a pre-
dictable order: first juvenile survival, then fecundity of young females, then fe-
cundity of adult females, and last, adult survival. Based on terrestrial large herbi-
vores, our review supports Eberhardt’s hypothesis and generalizes it to all sources
of temporal variation. For herbivores larger than 50 kg, however, fecundity of
young females rather than juvenile survival may be the fitness component most
sensitive to environmental perturbations. The production of more realistic and use-
ful population models will require the integration of long-term cohort effects and
the partitioning of temporal and sampling variation. It is clear, however, that the
greatest obstacle to better understanding the population dynamics of large herbi-
vores is the scarcity of data from long-term field studies of marked individuals. The
limited amount of information limits our ability to use a scientific approach for the
conservation and management of these ecologically, economically, and socially
important animals. A glance at the studies included in our review shows that stud-
ies of tropical large herbivores are particularly scarce, as are studies in ecosystems
with intact populations of large carnivores. We also found virtually no useful in-
formation on kangaroos and wallabies. More than 10 years ago, McNaughton &
Georgiadis (118) pointed out that there was a limited amount of data available on
population dynamics for the>90 species of large African herbivores. From both
a fundamental and an applied viewpoint, the major challenges to improving our
knowledge of populations of large herbivores are associated with field ecology. Be-
cause studies of large mammals are often costly, require large study areas, and may
affect stakeholders such as hunters, farmers, and recreationists, we suggest that
increased cooperation between universities and government agencies is required
to fully realize the potential of long-term monitoring of marked individuals.
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